Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Nutr Neurosci ; 17(4): 186-92, 2014 Jul.
Article in English | MEDLINE | ID: mdl-24621058

ABSTRACT

Omega-3 (n-3) fatty acids are important for adequate brain function and cognition. The aim of the present study was to evaluate how n-3 fatty acids influence the persistence of long-term memory (LTM) in an aversive memory task and to explore the putative mechanism involved. Female rats received isocaloric diets that included n-3 (n-3 group) or not (D group). The adult litters were subjected to an inhibitory avoidance task (0.7 mA, 1.0 seconds foot shock) to elicit persistent LTM. Twelve hours after the training session, the fatty acid profile and the brain derived neurotrophic factor (BDNF) content of the dorsal hippocampus were assessed. In addition, we measured the activation of the NR2B subunit of the N-methyl-d-aspartate (NMDA) receptor and the SRC family protein Fyn. Despite pronounced learning in both groups, the persistence of LTM was abolished in the D group 7 days after the training session. We also observed that the D group presented reductions in hippocampal DHA (22:6 n-3) and BDNF content. Twelve hours after the training session, the D group showed decreased NR2B and Fyn phosphorylation in the dorsal hippocampus, with no change in the total content of these proteins. Further, there was a decrease in the interaction of Fyn with NR2B in the D group, as observed by co-immunoprecipitation. Taken together, these data suggest that n-3 fatty acids influence the persistence of LTM by maintaining adequate levels of DHA and BDNF as well as by influencing the activation of NR2B and Fyn during the period of memory formation.


Subject(s)
Brain-Derived Neurotrophic Factor/drug effects , Fatty Acids, Omega-3/blood , Memory, Long-Term/drug effects , Proto-Oncogene Proteins c-fyn/metabolism , Receptors, N-Methyl-D-Aspartate/metabolism , Animals , Docosahexaenoic Acids/metabolism , Fatty Acids, Omega-3/administration & dosage , Fatty Acids, Unsaturated/deficiency , Female , Hippocampus/drug effects , Hippocampus/metabolism , Learning/drug effects , Memory/drug effects , Phosphorylation , Rats , Rats, Wistar
2.
Neurochem Int ; 59(2): 217-23, 2011 Aug.
Article in English | MEDLINE | ID: mdl-21693144

ABSTRACT

Impairment in the activity and expression of glutamate transporters has been found in experimental models of epilepsy in adult animals. However, there are few studies investigating alterations on glutamate transporters caused by epilepsy in newborn animals, especially in the early periods after seizures. In this study, alterations in the hippocampal glutamate transporters activity and immunocontent were investigated in neonatal rats (7 days old) submitted to kainate-induced seizures model. Glutamate uptake, glutamate transporters (GLT-1, GLAST, EAAC1) and glutamine synthetase (GS) were assessed in hippocampal slices obtained 12 h, 24 h, 48 h, 72 h and 60 days after seizures. Immunoreactivity for hippocampal GFAP, NeuN and DAPI were assessed 24 h after seizure. Behavioral analysis (elevated-plus maze and inhibitory avoidance task) was also investigated in the adult animals (60 days old). The decrease on glutamate uptake was observed in hippocampal slices obtained 24 h after seizures. The immunocontent of GLT-1 increased at 12 h and decreased at 24 h (+62% and -20%, respectively), while GLAST increased up to 48 h after seizures. No alterations were observed for EAAC1 and GS. It should be mentioned that there were no long-term changes in tested glutamate transporters at 60 days after kainate treatment. GFAP immunoreactivity increased in all hippocampal subfields (CA1, CA3 and dentate gyrus) with no alterations in NeuN and DAPI staining. In the adulthood, kainate-treated rats showed anxiety-related behavior and lower performance in the inhibitory avoidance task. Our findings indicate that acute modifications on hippocampal glutamate transporters triggered by a single convulsive event in early life may play a role in the behavioral alterations observed in adulthood.


Subject(s)
Glutamates/metabolism , Hippocampus/metabolism , Seizures/metabolism , Animals , Animals, Newborn , Avoidance Learning , Biological Transport , Blotting, Western , Maze Learning , Rats , Rats, Wistar , Seizures/physiopathology
SELECTION OF CITATIONS
SEARCH DETAIL
...