Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Ann N Y Acad Sci ; 1485(1): 71-82, 2021 02.
Article in English | MEDLINE | ID: mdl-33009705

ABSTRACT

Red blood cells (RBCs) in pathological situations undergo biochemical and conformational changes, leading to alterations in rheology involved in cardiovascular events. The shape of RBCs in volunteers and stable and exacerbated chronic obstructive pulmonary disease (COPD) patients was analyzed. The effects of RBC spherization on platelet transport (displacement in the flow field caused by their interaction with RBCs) were studied in vitro and by numerical simulations. RBC spherization was observed in COPD patients compared with volunteers. In in vitro experiments at a shear rate of 100 s-1 , treatment of RBCs with neuraminidase induced greater sphericity, which mainly affected platelet aggregates without changing aggregate size. At 400 s-1 , neuraminidase treatment changes both the size of the aggregates and the number of platelet aggregates. Numerical simulations indicated that RBC spherization induces an increase of the platelet mean square displacement, which is traditionally linked to the platelet diffusion coefficient. RBCs of COPD patients are more spherical than healthy volunteers. Experimentally, RBC spherization induces increased platelet transport to the wall. Additional studies are needed to understand the link between the effect of RBCs on platelet transport and the increased cardiovascular events observed in COPD patients.


Subject(s)
Blood Platelets/pathology , Erythrocytes/pathology , Pulmonary Disease, Chronic Obstructive/blood , Aged , Cross-Sectional Studies , Erythrocyte Indices , Female , Humans , Male , Middle Aged
2.
R Soc Open Sci ; 4(4): 170219, 2017 Apr.
Article in English | MEDLINE | ID: mdl-28484643

ABSTRACT

The early stages of clot formation in blood vessels involve platelet adhesion-aggregation. Although these mechanisms have been extensively studied, gaps in their understanding still persist. We have performed detailed in vitro experiments, using the well-known Impact-R device, and developed a numerical model to better describe and understand this phenomenon. Unlike previous studies, we took into account the differential role of pre-activated and non-activated platelets, as well as the three-dimensional nature of the aggregation process. Our investigation reveals that blood albumin is a major parameter limiting platelet aggregate formation in our experiment. Simulations are in very good agreement with observations and provide quantitative estimates of the adhesion and aggregation rates that are hard to measure experimentally. They also provide a value of the effective diffusion of platelets in blood subject to the shear rate produced by the Impact-R.

3.
J Biomech ; 49(16): 3808-3814, 2016 12 08.
Article in English | MEDLINE | ID: mdl-27810105

ABSTRACT

Most intracranial aneurysms morphologic studies focused on characterization of size, location, aspect ratio, relationship to the surrounding vasculature and hemodynamics. However, the spatial orientation with respect to the gravity direction has not been taken into account although it could trigger various hemodynamic conditions. The present work addresses this possibility. It was divided in two parts: 1) the orientations of 18, 3D time-of-flight MRI (3D TOF MRI), scans of saccular aneurysms were analyzed. This investigation suggested that there was no privileged orientation for cerebral aneurysms. The aneurysms were oriented in the brain as follows: 9 - down, 9 - up; 11 - right, 7 - left; 6 - front, 12 - back. 2) Based on these results, subsidiary in vitro experiments were performed, analyzing the behavior of red blood cells (RBCs) within a silicone model of aneurysm before and after flow diverter stent (FDS) deployment in the parent vessel. These experiments used a test bench that reproduces physiological pulsatile flow conditions for two orientations: an aneurysm sack pointing either up (opposite to gravitational force) and down (along the gravitational force). The results showed that the orientation of an aneurysm significantly affects the intra-aneurysmal RBCs behavior after stenting, and therefore that gravity can affect the intra-aneurysm behavior of RBCs. This suggests that the patient׳s aneurysm orientation could impact the outcome of the FDS treatment. The implementation of this effect in patient-specific numerical and preoperative decision support techniques could contribute to better understand the intrasaccular biological and hemodynamic events induced by FDS.


Subject(s)
Intracranial Aneurysm/physiopathology , Stents , Brain/blood supply , Brain/diagnostic imaging , Brain/physiology , Cerebrovascular Circulation , Erythrocytes/physiology , Female , Gravitation , Hemodynamics , Humans , Intracranial Aneurysm/diagnostic imaging , Intracranial Aneurysm/therapy , Magnetic Resonance Imaging , Male
4.
Biomed Eng Online ; 15(1): 113, 2016 Oct 10.
Article in English | MEDLINE | ID: mdl-27724910

ABSTRACT

BACKGROUND: Since hemodynamics plays a key role in the development and evolution of cardiovascular pathologies, physician's decision must be based on proper monitoring of relevant physiological flow quantities. METHODS: A numerical analysis of the error introduced by an intravascular Doppler guide wire on the peak velocity measurements has been carried out. The effect of probe misalignment (±10°) with respect to the vessel axis was investigated. Numerical simulations were performed on a realistic 3D geometry, reconstructed from coronary angiography images. Furthermore, instead of using Poiseuille or Womersley approximations, the unsteady pulsatile inlet boundary condition has been calculated from experimental peak-velocity measurements inside the vessel through a new approach based on an iterative Newton's algorithm. RESULTS: The results show that the presence of the guide modifies significantly both the maximum velocity and the peak position in the section plane; the difference is between 6 and 17 % of the maximum measured velocity depending on the distance from the probe tip and the instantaneous vessel flow rate. Furthermore, a misalignment of the probe may lead to a wrong estimation of the peak velocity with an error up to 10 % depending on the probe orientation angle. CONCLUSIONS: The Doppler probe does affect the maximum velocity and its position during intravascular Doppler measurements. Moreover, the Doppler-probe-wire sampling volume at 5.2 and 10 mm far from the probe tip is not sufficient to prevent its influence on the measurement. This should be taken into account in clinical practice by physicians during intravascular Doppler quantification. The new numerical approach used in this work could potentially be helpful in future numerical simulations to set plausible inlet boundary conditions.


Subject(s)
Coronary Vessels/physiology , Hemodynamics , Models, Cardiovascular , Pulse Wave Analysis/instrumentation , Algorithms , Coronary Angiography , Coronary Vessels/diagnostic imaging , Hydrodynamics , Imaging, Three-Dimensional
5.
Biomed Eng Online ; 14: 77, 2015 Aug 07.
Article in English | MEDLINE | ID: mdl-26250420

ABSTRACT

BACKGROUND: It is a known fact that blood flow pattern and more specifically the pulsatile time variation of shear stress on the vascular wall play a key role in atherogenesis. The paper presents the conception, the building and the control of a new in vitro test bench that mimics the pulsatile flows behavior based on in vivo measurements. METHODS: An in vitro cardiovascular simulator is alimented with in vivo constraints upstream and provided with further post-processing analysis downstream in order to mimic the pulsatile in vivo blood flow quantities. This real-time controlled system is designed to perform real pulsatile in vivo blood flow signals to study endothelial cells' behavior under near physiological environment. The system is based on an internal model controller and a proportional-integral controller that controls a linear motor with customized piston pump, two proportional-integral controllers that control the mean flow rate and temperature of the medium. This configuration enables to mimic any resulting blood flow rate patterns between 40 and 700 ml/min. In order to feed the system with reliable periodic flow quantities in vivo measurements were performed. Data from five patients (1 female, 4 males; ages 44-63) were filtered and post-processed using the Newtonian Womersley's solution. These resulting flow signals were compared with 2D axisymmetric, numerical simulation using a Carreau non-Newtonian model to validate the approximation of a Newtonian behavior. RESULTS: This in vitro test bench reproduces the measured flow rate time evolution and the complexity of in vivo hemodynamic signals within the accuracy of the relative error below 5%. CONCLUSIONS: This post-processing method is compatible with any real complex in vivo signal and demonstrates the heterogeneity of pulsatile patterns in coronary arteries among of different patients. The comparison between analytical and numerical solution demonstrate the fair quality of the Newtonian Womersley's approximation. Therefore, Womersley's solution was used to calculate input flow rate for the in vitro test bench.


Subject(s)
Coronary Vessels/physiology , Signal Processing, Computer-Assisted , Adult , Blood Flow Velocity , Coronary Vessels/diagnostic imaging , Female , Fourier Analysis , Humans , Hydrodynamics , Male , Middle Aged , Models, Biological , Pulsatile Flow , Reproducibility of Results , Tomography, X-Ray Computed
6.
Ann N Y Acad Sci ; 1149: 286-91, 2008 Dec.
Article in English | MEDLINE | ID: mdl-19120230

ABSTRACT

Mass production of Ehrlichia ruminantium variants from different regions of sub-Saharan Africa is one of the difficulties that must be overcome in producing a heartwater vaccine. Vaccine productivity can be limited by endogenous induction of interferon (IFN), which inhibits the propagation of Ehrlichia ruminantium (ER) in cell culture. Different kinds of endothelial cells, in which ER multiply efficiently, could be grown in a scalable way in VueLife Teflon bags on Cytodex 3 microcarriers where bead-to-bead transfer of cells occurs. The digital holographic microscope designed at the Université Libre de Bruxelles allows detection of the most appropriate time to harvest intracellular microorganisms for vaccine production.


Subject(s)
Bacterial Vaccines/therapeutic use , Ehrlichiosis/prevention & control , Interferons/metabolism , Animals , Cattle , Humans , Hybrid Cells
SELECTION OF CITATIONS
SEARCH DETAIL
...