Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
J Chem Ecol ; 49(1-2): 87-102, 2023 Feb.
Article in English | MEDLINE | ID: mdl-36631524

ABSTRACT

Anthracnose caused by Colletotrichum gloeosporioides affects the leaves, inflorescences, nuts, and peduncles of cashew trees (Anacardium occidentale). The use of genetically improved plants and the insertion of dwarf cashew clones that are more resistant to phytopathogens are strategies to minimize the impact of anthracnose on cashew production. However, resistance mechanisms related to the biosynthesis of secondary metabolites remain unknown. Thus, this study promoted the investigation of the profile of volatile organic compounds of resistant cashew clone leaves ('CCP 76', 'BRS 226' and 'BRS 189') and susceptible ('BRS 265') to C. gloeosporioides, in the periods of non-infection and infection of the pathogen in the field (July-December 2019 - Brazil). Seventy-eight compounds were provisionally identified. Chemometric analyses, such as Principal Component Analysis (PCA), Discriminating Partial Least Squares Analysis (PLS-DA), Discriminating Analysis of Orthogonal Partial Least Squares (OPLS-DA), and Hierarchical Cluster Analysis (HCA), separated the samples into different groups, highlighting hexanal, (E)-hex-2-enal, (Z)-hex-2-en-1-ol, (E)-hex-3-en-1-ol, in addition to α-pinene, α-terpinene, γ-terpinene, ß-pinene, and δ-3-carene, in the samples of the resistant clones in comparison to the susceptible clone. According to the literature, these metabolites have antimicrobial activity and are therefore chemical marker candidates for resistance to C. gloeosporioides in cashew trees.


Subject(s)
Anacardium , Volatile Organic Compounds , Gas Chromatography-Mass Spectrometry , Anacardium/chemistry , Volatile Organic Compounds/analysis , Solid Phase Microextraction , Cluster Analysis
SELECTION OF CITATIONS
SEARCH DETAIL
...