Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 28
Filter
Add more filters










Publication year range
1.
Pestic Biochem Physiol ; 195: 105563, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37666619

ABSTRACT

Spodoptera frugiperda (fall armyworm, FAW) is an invasive polyphagous lepidopteran pest that has developed sophisticated resistance mechanisms involving detoxification enzymes to eliminate toxic compounds it encounters in its diet including insecticides. Although its inventory of detoxification enzymes is known, the mechanisms that enable an adapted response depending on the toxic compound remain largely unexplored. Sf9 cells were used to investigate the role of the transcription factors, Cap n' collar isoform C (CncC) and musculoaponeurotic fibrosarcoma (Maf) in the regulation of the detoxification response. We overexpressed CncC, Maf or both genes, and knocked out (KO) CncC or its repressor Kelch-like ECH associated protein 1 (Keap1). Joint overexpression of CncC and Maf is required to confer increased tolerance to indole 3-carbinol (I3C), a plant secondary metabolite, and to methoprene, an insecticide. Both molecules induce reactive oxygen species (ROS) pulses in the different cell lines. The use of an antioxidant reversed ROS pulses and restored the tolerance to I3C and methoprene. The activity of detoxification enzymes varied according to the cell line. Suppression of Keap1 significantly increased the activity of cytochrome P450s, carboxylesterases and glutathione S-transferases. RNAseq experiments showed that CncC mainly regulates the expression of detoxification genes but is also at the crossroads of several signaling pathways (reproduction and immunity) maintaining homeostasis. We present new data in Sf9 cell lines suggesting that the CncC:Maf pathway plays a central role in FAW response to natural and synthetic xenobiotics. This knowledge helps to better understand detoxification gene expression and may help to design next-generation pest insect control measures.


Subject(s)
Methoprene , Xenobiotics , Animals , Sf9 Cells , Spodoptera/genetics , Kelch-Like ECH-Associated Protein 1 , Reactive Oxygen Species , Xenobiotics/pharmacology , NF-E2-Related Factor 2 , Signal Transduction
2.
Arch Toxicol ; 96(1): 211-229, 2022 01.
Article in English | MEDLINE | ID: mdl-34778935

ABSTRACT

Within the EuroMix project, we have previously developed an adverse outcome pathway (AOP)-based in vitro assay toolbox to investigate the combined effects of liver steatosis-inducing compounds in human HepaRG hepatocarcinoma cells. In this study, we applied the toolbox to further investigate mixture effects of combinations, featuring either similarly acting or dissimilarly acting substances. The valproic acid structural analogs 2-propylheptanoic acid (PHP) and 2-propylhexanoic acid (PHX) were chosen for establishing mixtures of similarly acting substances, while a combination with the pesticidal active substance clothianidin (CTD) was chosen for establishing mixtures of dissimilarly acting compounds. We first determined relative potency factors (RPFs) for each compound based on triglyceride accumulation results. Thereafter, equipotent mixtures were tested for nuclear receptor activation in transfected HepG2 cells, while gene expression and triglyceride accumulation were investigated in HepaRG cells, following the proposed AOP for liver steatosis. Dose addition was observed for all combinations and endpoints tested, indicating the validity of the additivity assumption also in the case of the tested mixtures of dissimilarly acting substances. Gene expression results indicate that the existing steatosis AOP can still be refined with respect to the early key event (KE) of gene expression, in order to reflect the diversity of molecular mechanisms underlying the adverse outcome.


Subject(s)
Adverse Outcome Pathways , Carcinoma, Hepatocellular , Fatty Liver , Liver Neoplasms , Fatty Liver/chemically induced , Fatty Liver/metabolism , Hep G2 Cells , Humans
3.
Insects ; 11(10)2020 Oct 11.
Article in English | MEDLINE | ID: mdl-33050622

ABSTRACT

Spodoptera frugiperda, a highly polyphagous insect pest from America, has recently invaded and widely spread throughout Africa and Asia. Effective and environmentally safe tools are needed for successful pest management of this invasive species. Natural molecules extracted from plants offer this possibility. Our study aimed to determine the insecticidal efficacy of a new molecule extracted from Alpinia galanga rhizome, the 1'S-1'-acetoxychavicol acetate (ACA). The toxicity of ACA was assessed by topical application on early third-instar larvae of S. frugiperda. Results showed that ACA caused significant larval growth inhibition and larval developmental abnormalities. In order to further explore the effects of this molecule, experiments have been performed at the cellular level using Sf9 model cells. ACA exhibited higher toxicity on Sf9 cells as compared to azadirachtin and was 38-fold less toxic on HepG2 cells. Inhibition of cell proliferation was observed at sublethal concentrations of ACA and was associated with cellular morphological changes and nuclear condensation. In addition, ACA induced caspase-3 activity. RT-qPCR experiments reveal that ACA induces the expression of several caspase genes. This first study on the effects of ACA on S. frugiperda larvae and cells provides evidence that ACA may have potential as a botanical insecticide for the control of S. frugiperda.

4.
Food Chem Toxicol ; 142: 111440, 2020 Aug.
Article in English | MEDLINE | ID: mdl-32473292

ABSTRACT

Physiologically-based toxicokinetic (PBTK) models are important tools for in vitro to in vivo or inter-species extrapolations in health risk assessment of foodborne and non-foodborne chemicals. Here we present a generic PBTK model implemented in the EuroMix toolbox, MCRA 9 and predict internal kinetics of nine chemicals (three endocrine disrupters, three liver steatosis inducers, and three developmental toxicants), in data-rich and data-poor conditions, when increasingly complex levels of parametrization are applied. At the first stage, only QSAR models were used to determine substance-specific parameters, then some parameter values were refined by estimates from substance-specific or high-throughput in vitro experiments. At the last stage, elimination or absorption parameters were calibrated based on available in vivo kinetic data. The results illustrate that parametrization plays a capital role in the output of the PBTK model, as it can change how chemicals are prioritized based on internal concentration factors. In data-poor situations, estimates can be far from observed values. In many cases of chronic exposure, the PBTK model can be summarized by an external to internal dose factor, and interspecies concentration factors can be used to perform interspecies extrapolation. We finally discuss the implementation and use of the model in the MCRA risk assessment platform.


Subject(s)
Hazardous Substances/toxicity , Models, Biological , Toxicokinetics , Animals , Humans , Probability , Risk Assessment
5.
Food Chem Toxicol ; 139: 111283, 2020 May.
Article in English | MEDLINE | ID: mdl-32201337

ABSTRACT

Exposure to complex chemical mixtures requires a tiered strategy for efficient mixture risk assessment. As a part of the EuroMix project we developed an adverse outcome pathway (AOP)-based assay toolbox to investigate the combined effects of the liver steatosis-inducing compounds imazalil, thiacloprid, and clothianidin in human HepaRG hepatocarcinoma cells. Compound-specific relative potency factors were determined using a benchmark dose approach. Equipotent mixtures were tested for nuclear receptor activation, gene and protein expression, and triglyceride accumulation, according to the molecular initiating events and key events proposed in the steatosis AOP. All three compounds affected the activity of nuclear receptors, but not key genes/proteins as proposed. Triglyceride accumulation was observed with three different methods. Mixture effects were in agreement with the assumption of dose additivity for all the combinations and endpoints tested. Compound-specific RPFs remained similar over the different endpoints studied downstream the AOP. Therefore, it might be possible to reduce testing to a smaller battery of key tests. The results demonstrate the suitability of our in vitro assay toolbox, integrated within an AOP framework and combined with the RPF approach, for the analysis of steatotic effects of chemical mixtures. However, mRNA results suggest that the steatosis AOP still needs improvement.


Subject(s)
Adverse Outcome Pathways , Drug-Related Side Effects and Adverse Reactions , Fatty Liver/chemically induced , Pesticides/toxicity , Animals , Cell Line, Tumor , Cell Survival/drug effects , Gene Expression , Hep G2 Cells , Humans , Imidazoles/toxicity , Liver/metabolism , Liver Neoplasms/chemically induced , Receptors, Cytoplasmic and Nuclear , Risk Assessment , Triglycerides/metabolism
6.
Chem Res Toxicol ; 31(8): 784-798, 2018 08 20.
Article in English | MEDLINE | ID: mdl-29995386

ABSTRACT

Adverse outcome pathways (AOPs) describe causal relationships between molecular perturbation and adverse cellular effects and are being increasingly adopted for linking in vitro mechanistic toxicology to in vivo data from regulatory toxicity studies. In this work, a case study was performed by developing a bioassay toolbox to assess key events in the recently proposed AOP for chemically induced liver steatosis. The toolbox is comprised of in vitro assays to measure nuclear receptor activation, gene and protein expression, lipid accumulation, mitochondrial respiration, and formation of fatty liver cells. Assay evaluation was performed in human HepaRG hepatocarcinoma cells exposed to the model compound cyproconazole, a fungicide inducing steatosis in rodents. Cyproconazole dose-dependently activated RARα and PXR, two molecular initiating events in the steatosis AOP. Moreover, cyproconazole provoked a disruption of mitochondrial functions and induced triglyceride accumulation and the formation of fatty liver cells as described in the AOP. Gene and protein expression analysis, however, showed expression changes different from those proposed in the AOP, thus suggesting that the current version of the AOP might not fully reflect the complex mechanisms linking nuclear receptor activation and liver steatosis. Our study shows that cyproconazole induces steatosis in human liver cells in vitro and demonstrates the utility of systems-based approaches in the mechanistic assessment of molecular and cellular key events in an AOP. AOP-driven in vitro testing as demonstrated can further improve existing AOPs, provide insight regarding molecular mechanisms of toxicity, and inform predictive risk assessment.


Subject(s)
Adverse Outcome Pathways , Fatty Liver/chemically induced , Fungicides, Industrial/toxicity , Triazoles/toxicity , Biological Assay , Cell Line, Tumor , Dose-Response Relationship, Drug , Fatty Liver/metabolism , Gene Expression , HEK293 Cells , Hepatocytes/drug effects , Hepatocytes/metabolism , Humans , Mitochondria, Liver/drug effects , Models, Biological , Polymerase Chain Reaction , Receptors, Cytoplasmic and Nuclear/metabolism , Risk Assessment , Triglycerides/metabolism
7.
Chemosphere ; 181: 666-674, 2017 Aug.
Article in English | MEDLINE | ID: mdl-28476006

ABSTRACT

General population exposure to pesticides mainly occurs via food and water consumption. However, their risk assessment for regulatory purposes does not currently consider the actual co-exposure to multiple substances. To address this concern, relevant experimental studies are needed to fill the lack of data concerning effects of mixture on human health. For the first time, the present work evaluated on human microsomes and liver cells the combined metabolic effects of, chlorfenvinphos, ethion and linuron, three pesticides usually found in vegetables of the European Union. Concentrations of these substances were measured during combined incubation experiments, thanks to a new analytical methodology previously developed. The collected data allowed for calculation and comparison of the intrinsic hepatic clearance of each pesticide from different combinations. Finally, the results showed clear inhibitory effects, depending on the association of the chemicals at stake. The major metabolic inhibitor observed was chlorfenvinphos. During co-incubation, it was able to decrease the intrinsic clearance of both linuron and ethion. These latter also showed a potential for metabolic inhibition mainly cytochrome P450-mediated in all cases. Here we demonstrated that human detoxification from a pesticide may be severely hampered in case of co-occurrence of other pesticides, as it is the case for drugs interactions, thus increasing the risk of adverse health effects. These results could contribute to improve the current challenging risk assessment of human and animal dietary to environmental chemical mixtures.


Subject(s)
Inactivation, Metabolic/drug effects , Liver/drug effects , Pesticides/metabolism , Animals , Chlorfenvinphos/metabolism , Chlorfenvinphos/pharmacology , Cytochrome P-450 Enzyme System/metabolism , Hepatocytes/drug effects , Humans , Linuron/metabolism , Linuron/pharmacology , Liver/cytology , Liver/physiology , Metabolic Clearance Rate/drug effects , Microsomes, Liver/drug effects , Organothiophosphorus Compounds/metabolism , Organothiophosphorus Compounds/pharmacology , Pesticides/chemistry , Pesticides/pharmacology
8.
J Nutr Biochem ; 40: 95-104, 2017 02.
Article in English | MEDLINE | ID: mdl-27866076

ABSTRACT

Oxidative stress could trigger lipid accumulation in liver and thus hepatic steatosis. Tea is able to prevent liver disorders, but a direct link between antioxidant capacities and prevention of steatosis has not been reported yet. We aimed to investigate such relationship in a rat model of high fat-high sucrose diet (HFS)-induced obesity and to explore more deeply the mechanisms in isolated hepatocytes. Wistar rats were divided into a control group (standard diet), an HFS group (high fat-sucrose diet) and an HFS+tea group (HFS diet with ad-libitum access to tea drink). Body weight, fat mass, glycemic parameters in blood, lipid and oxidative stress parameters in blood and liver were measured in each group after 14 weeks. Isolated hepatocytes were treated with the reactive oxygen species (ROS) inducer t-BHP in the presence or not of antioxidants (tempol or tea), and superoxide anion production and lipid accumulation were measured using specific fluorescent probes. We reported that the HFS diet highly increased hepatic lipids content, while tea consumption attenuated steatosis and improved the oxidative status (decrease in hepatic oxidative stress, increase in plasma total antioxidant capacity). The role of antioxidant properties of tea in such phenomenon was confirmed in primary cultured rat hepatocytes. Indeed, the increase of mitochondrial ROS production with t-BHP resulted in lipid accumulation in hepatocytes (positive linear regression), and antioxidants (tempol or tea) normalized both. We reported that the antioxidant properties of tea protect rats from an obesogenic HFS diet-induced hepatic steatosis by counteracting the ROS-dependent lipogenesis.


Subject(s)
Antioxidants/pharmacology , Diet, High-Fat/adverse effects , Lipogenesis/physiology , Non-alcoholic Fatty Liver Disease/diet therapy , Tea , Animals , Antioxidants/metabolism , Cells, Cultured , Disease Models, Animal , Hepatocytes/metabolism , Lipid Peroxidation , Male , Non-alcoholic Fatty Liver Disease/etiology , Obesity/diet therapy , Obesity/physiopathology , Oxidative Stress , Rats, Wistar , Reactive Oxygen Species/metabolism , Tea/chemistry
9.
Food Chem Toxicol ; 90: 55-63, 2016 Apr.
Article in English | MEDLINE | ID: mdl-26829614

ABSTRACT

Benzophenone-2 (BP2) is widely used as a UV screen in both industrial products and cosmetic formulations, where it is frequently found associated with fragrance compounds, such as isoeugenol and coumarin. BP2 is now recognized as an endocrine disruptor, but to date, no information has been reported on its fate in humans. The intrinsic clearance (Clint) and metabolic interactions of BP2 were explored using cryopreserved human hepatocytes in primary cultures. In vitro kinetic experiments were performed to estimate the Michaelis-Menten parameters. The substrate depletion method demonstrated that isoeugenol was cleared more rapidly than BP2 or coumarin (Clint = 259, 94.7 and 0.40 µl/min/10(6) cells respectively). This vitro model was also used to study the metabolic interactions between BP2 and isoeugenol and coumarin. Coumarin exerted no effects on either isoeugenol or BP2 metabolism, because of its independent metabolic pathway (CYP2A6). Isoeugenol appeared to be a potent competitive substrate inhibitor of BP2 metabolism, equivalent to the specific UGT1A1 substrate: estradiol. Despite the fact that inhibition of UGT by xenobiotics is not usually considered to be a major concern, the involvement of UGT1A1 in BP2 metabolism may have pharmacokinetic and pharmacological consequences, due to the its polymorphisms in humans and its pure estrogenic effect.


Subject(s)
Benzophenones/pharmacokinetics , Coumarins/pharmacokinetics , Eugenol/analogs & derivatives , Hepatocytes/metabolism , Cells, Cultured , Drug Interactions , Eugenol/pharmacokinetics , Humans , Molecular Structure
10.
Toxicol In Vitro ; 29(7): 1916-31, 2015 Oct.
Article in English | MEDLINE | ID: mdl-26239606

ABSTRACT

Testing hepatotoxicity is a crucial step in the development and toxicological assessment of drugs and chemicals. Bio-activation can lead to the formation of metabolites which may present toxicity for the organism. Classical cytotoxic tests are not always appropriate and are often insufficient, particularly when non metabolically-competent cells are used as the model system, leading to false-positive or false-negative results. We tested over 24 h the effects of eight reference compounds on two different cell models: primary cultures of rat hepatocytes and FAO hepatoma cells that lack metabolic properties. We performed inter-assay validation between three classical cytotoxicity assays and real-time cell impedance data. We then complemented these experiments with high-content screening (HCS) to determine the cell function disorders responsible for the observed effects. Among the different assays used, the neutral red test seemed to be well suited to our two cell models, coupled with real-time cellular impedance which proved useful in the detection of bio-activation. Indeed, impedance monitoring showed a high sensitivity with interesting curve profiles yet seemed unsuitable for evaluation of viability on primary culture. Finally, HCS in the evaluation of hepatotoxicity is likely to become an essential tool for use in parallel to a classical cytotoxic assay in the assessment of drugs and environmental chemicals.


Subject(s)
Chemical and Drug Induced Liver Injury , Hepatocytes/drug effects , High-Throughput Screening Assays , Acetaminophen/toxicity , Amodiaquine/toxicity , Animals , Carbamazepine/toxicity , Cell Line, Tumor , Cell Survival , Cells, Cultured , Diethylstilbestrol/toxicity , Erythromycin/toxicity , Furosemide/toxicity , Hepatocytes/metabolism , Male , Neutral Red/metabolism , Rats , Toxicity Tests , Tretinoin/toxicity
11.
Molecules ; 20(8): 14985-5002, 2015 Aug 17.
Article in English | MEDLINE | ID: mdl-26287152

ABSTRACT

Tea is an interesting source of antioxidants capable of counteracting the oxidative stress implicated in liver diseases. We investigated the impact of antioxidant molecules provided by a mixture of teas' leaves (green, oolong, pu-erh) after different infusion durations in the prevention of oxidative stress in isolated rat hepatocytes, by comparison with pure epigallocatechin-3-gallate (EGCG), the main representative of tea catechins. Dried aqueous tea extracts (ATE) obtained after 5, 15 and 30 min infusion time were characterized for total polyphenols (gallic acid equivalent), catechins, gallic acid and caffeine (HPLC-DAD/ESI-MS) contents, and for scavenging ability against 2,2-diphenyl-1-picrylhydrazyl free radical. Hepatoprotection was evaluated through hepatocyte viability tests using tert-butyl hydroperoxide as a stress inducer, (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide, neutral red uptake, real-time cellular impedance) and mitochondrial function tests. We showed that a 5-min incubation time is sufficient for an optimal bioaccessibility of tea compounds with the highest antioxidative ability, which decreases for longer durations. A 4-h pretreatment of cells with ATE significantly prevented cell death by regulating reactive oxygen species production and maintaining mitochondrial integrity. Pure EGCG, at doses similar in ATE (5-12 µM), was inefficient, suggesting a plausible synergy of several water-soluble tea compounds to explain the ATE beneficial effects.


Subject(s)
Alkaloids/pharmacology , Antioxidants/pharmacology , Hepatocytes/pathology , Oxidative Stress/drug effects , Phenols/pharmacology , Protective Agents/pharmacology , Tea/chemistry , Animals , Caffeine/pharmacology , Catechin/analogs & derivatives , Catechin/pharmacology , Cell Survival/drug effects , Chromatography, High Pressure Liquid , Hepatocytes/drug effects , Liver/drug effects , Male , Mitochondria/drug effects , Mitochondria/metabolism , Models, Biological , Plant Extracts/pharmacology , Rats , Spectrometry, Mass, Electrospray Ionization , Superoxides/metabolism , Time Factors , tert-Butylhydroperoxide/toxicity
12.
Toxicol Sci ; 141(1): 234-43, 2014 Sep.
Article in English | MEDLINE | ID: mdl-25028461

ABSTRACT

French consumers are exposed to mixtures of pesticide residues in part through food consumption. As a xenosensor, the pregnane X receptor (hPXR) is activated by numerous pesticides, the combined effect of which is currently unknown. We examined the activation of hPXR by seven pesticide mixtures most likely found in the French diet and their individual components. The mixture's effect was estimated using the concentration addition (CA) model. PXR transactivation was measured by monitoring luciferase activity in hPXR/HepG2 cells and CYP3A4 expression in human hepatocytes. The three mixtures with the highest potency were evaluated using the CA model, at equimolar concentrations and at their relative proportion in the diet. The seven mixtures significantly activated hPXR and induced the expression of CYP3A4 in human hepatocytes. Of the 14 pesticides which constitute the three most active mixtures, four were found to be strong hPXR agonists, four medium, and six weak. Depending on the mixture and pesticide proportions, additive, greater than additive or less than additive effects between compounds were demonstrated. Predictions of the combined effects were obtained with both real-life and equimolar proportions at low concentrations. Pesticides act mostly additively to activate hPXR, when present in a mixture. Modulation of hPXR activation and its target genes induction may represent a risk factor contributing to exacerbate the physiological response of the hPXR signaling pathways and to explain some adverse effects in humans.


Subject(s)
Complex Mixtures/analysis , Endocrine Disruptors/analysis , Food Contamination/analysis , Hepatocytes/drug effects , Pesticide Residues/analysis , Receptors, Steroid/metabolism , Cell Culture Techniques , Cell Survival/drug effects , Complex Mixtures/toxicity , Diet , Dose-Response Relationship, Drug , Endocrine Disruptors/toxicity , France , Hep G2 Cells , Hepatocytes/metabolism , Humans , Luciferases/genetics , Models, Biological , Pesticide Residues/toxicity , Predictive Value of Tests , Pregnane X Receptor , Receptors, Steroid/genetics , Regression Analysis
13.
Toxicol In Vitro ; 28(8): 1507-20, 2014 Dec.
Article in English | MEDLINE | ID: mdl-24997295

ABSTRACT

Pesticides as well as many other environmental pollutants are considered as risk factors for the initiation and the progression of cancer. In order to evaluate the in vitro effects of chemicals present in the diet, we began by combining viability, real-time cellular impedance and high throughput screening data to identify a concentration "zone of interest" for the six xenobiotics selected: endosulfan, dioxin, carbaryl, carbendazim, p'p'DDE and hydroquinone. We identified a single concentration of each pollutant allowing a modulation of the impedance in the absence of vital changes (nuclear integrity, mitochondrial membrane potential, cell death). Based on the number of observed modulations known to be involved in hepatic homeostasis dysfunction that may lead to cancer progression such as cell cycle and apoptosis regulators, EMT biomarkers and signal transduction pathways, we then ranked the pollutants in terms of their toxicity. Endosulfan, was able to strongly modulate all the studied cellular processes in HepG2 cells, followed by dioxin, then carbendazim. While p,p'DDE, carbaryl and hydroquinone seemed to affect fewer functions, their effects nevertheless warrant close scrutiny. Our in vitro data indicate that these xenobiotics may contribute to the evolution and worsening of hepatocarcinoma, whether via the induction of the EMT process and/or via the deregulation of liver key processes such as cell cycle and resistance to apoptosis.


Subject(s)
Carcinoma, Hepatocellular/chemically induced , Environmental Pollutants/toxicity , High-Throughput Screening Assays , Liver Neoplasms/chemically induced , Biomarkers , Cell Survival/drug effects , Disease Progression , Electric Impedance , Epithelial-Mesenchymal Transition , Hep G2 Cells , Humans
14.
Food Chem Toxicol ; 70: 9-18, 2014 Aug.
Article in English | MEDLINE | ID: mdl-24793377

ABSTRACT

For several decades, people have been in contact with bisphenol A (BPA) primarily through their diet. Nowadays it is gradually replaced by an analogue, bisphenol S (BPS). In this study, we compared the effects of these two bisphenols in parallel with the positive control diethylstilbestrol (DES) on different hepatocyte cell lines. Using a cellular impedance system we have shown that BPS is less cytotoxic than BPA in acute and chronic conditions. We have also demonstrated that, contrary to BPA, BPS is not able to induce an increase in intracellular lipid and does not activate the PXR receptor which is known to be involved in part, in this process. In parallel, it failed to modulate the expression of CYP3A4 and CYP2B6, the drug transporter ABCB1 and other lipid metabolism genes (FASN, PLIN). However, it appears to have a weak effect on GSTA4 protein expression and on the Erk1/2 pathway. In conclusion, in contrast to BPA, BPS does not appear to induce the metabolic syndrome that may lead to non-alcoholic fatty liver disease (NAFLD), in vitro. Although we have to pay special attention to BPS, its use could be less dangerous concerning this toxicological endpoint for human health.


Subject(s)
Benzhydryl Compounds/toxicity , Hepatocytes/drug effects , Non-alcoholic Fatty Liver Disease/pathology , Phenols/toxicity , Sulfones/toxicity , ATP Binding Cassette Transporter, Subfamily B/genetics , ATP Binding Cassette Transporter, Subfamily B/metabolism , Carrier Proteins/genetics , Carrier Proteins/metabolism , Cell Line , Cytochrome P-450 CYP2B6/genetics , Cytochrome P-450 CYP2B6/metabolism , Cytochrome P-450 CYP3A/genetics , Cytochrome P-450 CYP3A/metabolism , Fatty Acid Synthase, Type I/genetics , Fatty Acid Synthase, Type I/metabolism , Glutathione Transferase/genetics , Glutathione Transferase/metabolism , Hep G2 Cells , Humans , Lipid Metabolism/drug effects , Liver/cytology , Liver/drug effects , Perilipin-1 , Phosphoproteins/genetics , Phosphoproteins/metabolism , Pregnane X Receptor , Receptors, Steroid/genetics , Receptors, Steroid/metabolism
15.
Cell Biol Toxicol ; 30(1): 17-29, 2014 Feb.
Article in English | MEDLINE | ID: mdl-24343343

ABSTRACT

Chronic exposure to low doses of pesticides present in the environment is increasingly suspected to cause major health issues to humans. Toxicological evaluations become more complex when the exposure concerns chemical combinations. Atrazine, chlorpyrifos, and endosulfan are pesticides used worldwide in agriculture and are therefore currently found at residual levels in food and the environment, even in countries in which they are now banned. Our study aimed to use Real-Time Cell Impedance Analyzer to investigate changes in phenotypical status of primary human hepatocytes and differentiated HepaRG cells induced by short and chronic exposures to these three chemicals. In contrast to the traditionally used endpoint cytotoxicity test, this technology allows kinetic measurements in real-time throughout the entire experiment. Our data show significantly higher cytotoxic effects of mixtures as compared to individual pesticides and a greater susceptibility of human hepatocytes as compared to HepaRG to short-term exposure (24 h). Repeated exposure over 2 weeks to endosulfan and endosulfan-containing mixture induced HepaRG cell death in a time- and dose-dependent manner. Of the typical genes involved in metabolism and cell-response to xenobiotics, we found an exposure time- and condition-dependent deregulation of the expression of CYP3A4 and UGT1A in HepaRG cells exposed to low doses of pesticides and mixtures. Our data demonstrate the usefulness of real-time cell monitoring in long-term toxicological evaluations of co-exposure to xenobiotics. In addition, they support but at the same time highlight certain limitations in the use of HepaRG cells as the gold standard liver cell model in toxicity studies.


Subject(s)
Atrazine/toxicity , Chlorpyrifos/toxicity , Endosulfan/toxicity , Environmental Pollutants/toxicity , Hepatocytes/drug effects , Herbicides/toxicity , Insecticides/toxicity , Cell Adhesion/drug effects , Cell Death , Cell Line , Cell Survival/drug effects , Hepatocytes/physiology , Humans , Primary Cell Culture , Transcriptome/drug effects
16.
Food Chem Toxicol ; 50(11): 3963-70, 2012 Nov.
Article in English | MEDLINE | ID: mdl-22902829

ABSTRACT

Persistent organic pollutants (POPs) are a group of organic or chemicals that adversely affect human health and are persistent in the environment. These highly toxic compounds include industrial chemicals, pesticides such as organochlorines, and unwanted wastes such as dioxins. Although studies have described the general toxicity effects of organochlorine pesticides, the mechanisms underlying its potential carcinogenic effects in the liver are not well understood. In this study, we analyzed the effect of three organochlorine pesticides (dichlorodiphenyltrichloroethane, heptachlore and endosulfan) and 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) on the epithelial to mesenchymal transition (EMT) in primary cultured human hepatocytes. We found that these compounds modified the hepatocyte phenotype, inducing cell spread, formation of lamellipodia structures and reorganization of the actin cytoskeleton in stress fibers. These morphological alterations were accompanied by disruption of cell-cell junctions, E-cadherin repression and albumin down-regulation. Interestingly, these characteristic features of dedifferentiating hepatocytes were correlated with the gain of expression of various mesenchymal genes, including vimentin, fibronectin and its receptor ITGA5. These various results show that organochlorines and TCDD accelerate cultured human hepatocyte dedifferentiation and EMT processes. These events could account, at least in part, for the carcionogenic and/or fibrogenic activities of these POPs.


Subject(s)
Epithelial-Mesenchymal Transition/drug effects , Hepatocytes/drug effects , Hydrocarbons, Chlorinated/toxicity , Pesticides/toxicity , Cadherins/metabolism , Carcinogens/toxicity , Cells, Cultured , Cytoskeleton/drug effects , DDT/toxicity , Endosulfan/toxicity , Fibronectins/genetics , Gene Expression Regulation/drug effects , Hepatocytes/metabolism , Heptachlor/toxicity , Humans , Polychlorinated Dibenzodioxins/toxicity , Vimentin/genetics
17.
Toxicology ; 300(1-2): 19-30, 2012 Oct 09.
Article in English | MEDLINE | ID: mdl-22677888

ABSTRACT

Endosulfan is an organochlorine pesticide commonly used in agriculture yet classified by the Stockholm Convention in 2011 as a persistent organic pollutant (POP). Its potential toxicity makes its continued use a major public health concern. Despite studies in laboratory animals, the molecular mechanisms underlying the carcinogenic effects of endosulfan in human liver remain poorly understood. In this study, we investigated the phenotypical effects of endosulfan on HepG2 liver cells. First, we found that endosulfan disrupted the anoikis process. Indeed, cells exposed to endosulfan were initially sensitized to anoikis and thereafter recovered their resistance to this process. This phenomenon occurred in parallel to the induction of the epithelial to mesenchymal (EMT) process, as demonstrated by: (1) reorganization of the actin cytoskeleton together with activation of the FAK signaling pathway; (2) repression of E-cadherin expression; (3) induction of Snail and Slug; (4) activation of the WNT/ß-catenin pathway; and (5) induction and reorganization of mesenchymal markers (S100a4, vimentin, fibronectin, MMP-7). Secondly, despite the acquisition of mesenchymal characteristics, HepG2 cells exposed to endosulfan failed to migrate. This incapacity to acquire a motile phenotype could be attributed to a disruption of the interaction between the ECM and the cells. Taken together, these results indicate that endosulfan profoundly alters the phenotype of liver cells by inducing cell detachment and partial EMT as well as disrupting the anoikis process. All these events account, at least in part, for the carcinogenic potential of endosulfan in liver.


Subject(s)
Anoikis/drug effects , Cell Adhesion/drug effects , Endosulfan/adverse effects , Hep G2 Cells/drug effects , Insecticides/adverse effects , Blotting, Western , Caspases/metabolism , Cell Migration Assays , Cytoskeleton/drug effects , Dose-Response Relationship, Drug , Fluorescent Antibody Technique , Humans , Reverse Transcriptase Polymerase Chain Reaction , Signal Transduction/drug effects , Wnt Signaling Pathway/drug effects , beta Catenin/drug effects , rho-Associated Kinases/drug effects
18.
Toxicol In Vitro ; 26(5): 718-26, 2012 Aug.
Article in English | MEDLINE | ID: mdl-22515965

ABSTRACT

Low amounts of residual pesticides are present in the environment, often as mixtures of chemicals which contaminate drinking water and food, being a source of chronic exposure for humans and a growing matter of concern in public health policy. Despite of the needs and growing investigation, little is known about the impact of low doses and mixtures of these chemicals on human health. The purpose of this study was to enlighten if modifications of liver cell metabolic- and/or defence-related capacities could occur under such exposures. In vitro perturbations of several metabolic, stress and survival pathways in human and mice cultured hepatocytes and liver cells were evaluated under exposure to low doses of single molecules or equimolecular combinations of the three pesticides, atrazine, chlorpyrifos and endosulfan. Mainly phases I and II enzymes of detoxification were found modulated, together with apoptotic process deregulation. Hence, CYP3A4 and CYP3A11 were upregulated in primary cultured human and mouse hepatocytes, respectively. These inductions were correlated to an anti-apoptotic process (increased Bcl-xL/Bax ratio, inhibition of the PARP protein cleavage). Such disturbances in pathways involved in cell protection may possibly account for initiation of pathologies or decrease in drugs efficiency in humans exposed to multiple environmental contaminants.


Subject(s)
Atrazine/toxicity , Chlorpyrifos/toxicity , Endosulfan/toxicity , Hepatocytes/drug effects , Pesticides/toxicity , Animals , Cell Line , Cells, Cultured , Female , Gene Expression Profiling , Hepatocytes/metabolism , Humans , Male , Mice , Mice, Inbred C57BL
19.
Rapid Commun Mass Spectrom ; 26(6): 599-610, 2012 Mar 30.
Article in English | MEDLINE | ID: mdl-22328212

ABSTRACT

Polybrominated diphenyl ethers (PBDEs) are flame retardants widely used in electronic and domestic goods. These persistent pollutants are present in the environment and in humans, and their toxicological properties are of growing concern. PBDEs can be metabolised into compounds suspected to be responsible for their toxicity. These metabolites have been characterised quite well in rodents and fish, but available information in humans remains scarce. For their identification, an efficient method for the simultaneous analysis of PBDEs, hydroxylated PBDEs (OH-PBDEs), and other PBDE metabolites in a single run was needed and has been developed in this work. Atmospheric pressure ionisation modes were compared, and Atmospheric Pressure Photo-Ionization (APPI) was selected. After careful setting of APPI parameters such as dopant and operating temperature, the optimised method was based on APPI ionization coupled to High-Resolution Mass Spectrometry operating in the full scan mode at a resolution of 60 000. This provided excellent sensitivity and specificity, allowing the discrimination of signals which could not be resolved on a triple quadrupole used as a reference. The full-scan high-resolution acquisition mode allowed monitoring of both parent PBDEs and their metabolites, including hydroxylated PBDEs, with detection limits ranging from 0.1 pg to 4.5 pg injected on-column based on the investigated standard compounds. The method was applied to the study of BDE-47 metabolism after incubation with human primary cultures of hepatocytes, and proved to be efficient not only for monitoring the parent compound and expected hydroxylated metabolites, but also for the identification of other non-targeted metabolites. In addition to hydroxy-BDE-47, several conjugated metabolites could be located, and the formation of a dihydrodiol derivative was evidenced for the first time in the case of PBDEs in this work.


Subject(s)
Hepatocytes/metabolism , Polybrominated Biphenyls/analysis , Polybrominated Biphenyls/metabolism , Spectrometry, Mass, Electrospray Ionization/methods , Adult , Aged, 80 and over , Cells, Cultured , Chromatography, Liquid/methods , Female , Halogenated Diphenyl Ethers , Hepatocytes/chemistry , Humans , Ions/chemistry , Male , Middle Aged , Sensitivity and Specificity
20.
Food Chem Toxicol ; 49(12): 3128-35, 2011 Dec.
Article in English | MEDLINE | ID: mdl-22001173

ABSTRACT

Although many studies of lindane toxicity have been carried out, we still know little about the underlying molecular mechanisms. We used a microarray specifically designed for studies of the hepatotoxic effects of xenobiotics to evaluate the effects of lindane on specific gene expression in primary cultured rat hepatocytes. These genes were assigned to detoxication processes (CYP3A4, Gsta2, CYP4A1), cell signalling pathways and apoptosis (Eif2b3, Eif2b4, PKC). In this study, we demonstrate that lindane up-regulates PKC by increasing oxidative stress. TEMPO (a well known free radical scavenger) and Ro 31-8220 (an inhibitor of classical PKCs) prevented the inhibition of spontaneous and intrinsic apoptosis pathway (characterised by Bcl-xL induction, Bax down-regulation, caspases inhibition) and the induction of necrosis by lindane in rat hepatocytes. Thus, these findings indicate that several dependent key signalling pathways, including detoxification, apoptosis, PKC activity and redox status maintenance, contribute to lindane-induced toxicity in primary cultured rat hepatocytes. This may account more clearly for the acute and chronic effects of lindane in vivo, with the induction of cell death and tumour promotion, respectively.


Subject(s)
Hepatocytes/drug effects , Hexachlorocyclohexane/toxicity , Oligonucleotide Array Sequence Analysis/methods , Animals , Antioxidants/pharmacology , Apoptosis/drug effects , Caspases/genetics , Caspases/metabolism , Cell Death/drug effects , Cyclic N-Oxides/pharmacology , Down-Regulation , Hepatocytes/cytology , Hepatocytes/metabolism , Indoles/pharmacology , Male , Necrosis/chemically induced , Necrosis/metabolism , Oxidative Stress/drug effects , Protein Kinase C/antagonists & inhibitors , Protein Kinase C/genetics , Protein Kinase C/metabolism , Rats , Rats, Sprague-Dawley , Reactive Oxygen Species/metabolism , Signal Transduction , Up-Regulation , bcl-2-Associated X Protein/genetics , bcl-2-Associated X Protein/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...