Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
J Obstet Gynaecol Res ; 47(12): 4306-4318, 2021 Dec.
Article in English | MEDLINE | ID: mdl-34571573

ABSTRACT

AIM: Both human and rat myometrium express stromal interaction molecule (STIM) and Orai/transient receptor potential canonical (TRPC) proteins, which are components of plasma membrane Ca2+ store-operated channels. There are reports that these proteins mediate agonist-induced Ca2+ influx in cultured myometrial cells. In this study, we aimed to determine the effects of Pyr6, an Orai channel blocker, on different agonist-induced contractions in isolated segments of rat uterus. MAIN FINDINGS: In Ca2+ -free Tyrode's solution, Pyr6 (3 µM) promoted a reduction in both the magnitude and frequency of Ca2+ (1 mM)-induced uterine contractions after the addition of carbachol (CCh, 100 µM), but not after the addition of oxytocin (OT, 150 nM). In Ca2+ (0.18 mM)-Tyrode's solution, Pyr6 completely relaxed uterine contractions induced by both CCh and cloprostenol (300 nM), but not those induced by either KCI (40-80 mM) or OT. The addition of Pyr6 abolished the oscillatory uterine contractions induced by Ca2+ after the addition of cyclopiazonic acid (CPA, 10 µM). When pre-incubated (5 min), Pyr6 reduced the magnitude of both CCh-induced phasic and tonic contractions. The addition of Pyr2 (3 µM), an Orai and TRPC channel blocker, abolished uterine contractions induced by CCh or OT. CONCLUSION: Considering Pyr6 as an Orai channel blocker and its inhibitory effect on uterine contractions induced by CCh, CPA, and cloprostenol, we suggest that Orai channels are required for the maintenance of contractions induced by these agonists in rat uterus.


Subject(s)
Myometrium , Uterine Contraction , Animals , Female , Oxytocin , Pregnancy , Rats
2.
J Toxicol Environ Health A ; 82(18): 1009-1018, 2019.
Article in English | MEDLINE | ID: mdl-31658881

ABSTRACT

The use of natural products from herbs may be a therapeutic option in dyslipidemia treatment. Campomanesia xanthocarpa (Mart.) O. Berg (Myrtaceae) leaves have been used to decrease cholesterol levels. However, studies to determine activities of this plant on triglycerides metabolism have received little attention. The aim of this study was to examine anti-hyperlipidemic effects of a C. xanthocarpa aqueous leaf extract (CxAE) and assess protective actions against oxidative stress and DNA damage. The tyloxapol-induced hyperlipidemia model was used in Wistar rats. Rats were treated orally with CxAE either 250 or 500 mg/kg/day for 7 days prior to tyloxapol administration. Biochemical parameters, oxidative stress levels, and genomic instability were assessed in several tissues. CxAE decreased cholesterol and triglyceride levels in serum and hepatic and renal DNA damage in tyloxapol-treated rats. There was no marked effect on the micronucleus frequency in bone marrow. The extract increased catalase activity and decreased glutathione S-transferase activity in kidney tissue. CxAE showed anti-hyperlipidemic effects, improved oxidative parameters, and protected DNA against damage induced by tyloxapol-induced hyperlipidemia, suggesting C. xanthocarpa leaves may be useful in preventing dyslipidemias.Abbreviations: ALP: Alkaline phosphatase; ALT: Aspartate aminotransferase; ANOVA: Analysis of variance; AST: Aspartate aminotransferase; Ator: Atorvastatin; CAT: Catalase; Chol: Cholesterol; CxAE: Campomanesia xanthocarpa aqueous extract; GST: Glutathione S-transferase; HDL: High density cholesterol; i.p.: Intraperitoneal; NCE: Normochromatic erythrocyte; PBS: Phosphate buffer solution; PCE: Polychromatic erythrocyte; ROS: Reactive oxygen species; SD: Standard deviation; SOD: Superoxide dismutase; T: Tyloxapol; TBARS: Thiobarbituric acid reacting substances; TG: Triglyceride.


Subject(s)
DNA Damage/drug effects , Hyperlipidemias/drug therapy , Hypolipidemic Agents/therapeutic use , Myrtaceae/chemistry , Oxidative Stress/drug effects , Plant Extracts/toxicity , Plant Extracts/therapeutic use , Animals , Plant Leaves/chemistry , Rats , Rats, Wistar
3.
J Toxicol Environ Health A ; 82(1): 62-74, 2019.
Article in English | MEDLINE | ID: mdl-30741125

ABSTRACT

Campomanesia xanthocarpa leaves are used as tea to treat diarrhea, inflammation, and hypercholesterolemia. Some pharmacological studies noted its beneficial uses of C. xanthocarpa; however, few investigations examined the toxicological profile of this plant. The aim of this study was to determine the chemical composition, genotoxic, and mutagenic potential of an aqueous extract of C. xanthocarpa leaves (CxAE), and potential protective effects against oxidative damage. Phytochemical constituents were determined using HPLC, and antioxidant effect in vitro was measured using 2,2-diphenyl-1-picrylhydrazyl (DPPH) free radical assay. Genotoxic effects and chromosomic mutations were assessed using comet assay and micronucleus (MN) test in Wistar rats treated with CxAE at 250, 500 or 1000 mg/kg for 7 consecutive days. Lipid peroxidation and antioxidant enzyme activities were measured in several tissues. CxAE induced mutations in TA98, TA97a, and TA102 strains. However, in the presence of metabolic activation, data were negative for all strains tested. Lack of mutagenicity was also observed in the MN test. This extract did not induce DNA damage, except when the highest concentration was used. DNA oxidative damage induced by hydrogen peroxide (H2O2) decreased in blood after treatment with CxAE. Lipid peroxidation levels were reduced while superoxide dismutase (SOD) activity increased in kidneys. The inhibitory concentration of CxAE required to lower DPPH levels to 50% was 38.47 ± 2.06 µg/ml. In conclusion, frameshift and oxidative mutations were observed only in the absence of metabolic activation which may be attributed to the presence of flavonoids such as quercetin. It is of interest that CxAE also showed protective effects against DNA oxidative damage associated with presence of ellagic acid, a phenolic acid with antioxidant activities. CxAE did not induce in vivo mutagenicity, suggesting that this extract poses a low toxic hazard over the short term.


Subject(s)
Myrtaceae/toxicity , Oxidative Stress , Animals , Biphenyl Compounds , Comet Assay , Dose-Response Relationship, Drug , Male , Micronucleus Tests , Myrtaceae/chemistry , Picrates , Plant Extracts/chemistry , Plant Extracts/toxicity , Plant Leaves/chemistry , Rats , Rats, Wistar
4.
Exp Mol Pathol ; 103(1): 51-55, 2017 08.
Article in English | MEDLINE | ID: mdl-28684216

ABSTRACT

Hyperlipidemia is characterized by high levels of plasma triglycerides and LDL-cholesterol, accompanied by reduced HDL-cholesterol levels, and is often associated with an increased risk of cardiovascular diseases. However, few studies have shown the effects of hyperlipidemia on genomic stability. The aim of this study was to evaluate DNA damage provided by tyloxapol induced hyperlipidemia. Tyloxapol, a non-ionic surfactant, which increases the activity of the enzyme HMG-CoA reductase and decreases clearance of lipoproteins, was used to induce hyperlipidemia in Wistar rats. Genomic instability was assessed using the comet assay which evaluates DNA strand breaks in several tissues, and the micronucleus assay in bone marrow to detect chromosomal mutagenicity for clastogenic and/or aneugenic effects. Biochemical analyses confirmed hyperlipidemia in tyloxapol-treated rats, accompanied by hyperglycemia. Higher creatinine and urea levels were observed, suggesting kidney injury. The comet assay indicated increased DNA damage in blood, liver, and kidney, but not in brain tissue. However, no increase in micronucleus frequency was observed, indicating lack of mutagenic effects. Simvastatin, used as lipid lowering drug, decreased cholesterol and triglycerides in rats treated with tyloxapol. Those findings indicate that tyloxapol-induced hyperlipidemia is able to increase genomic instability, which is associated with higher cancer risk. Therefore, this surfactant might be used in models to evaluate new hypolipidemic drugs with associated chemopreventive properties.


Subject(s)
DNA Damage/drug effects , Hyperlipidemias/blood , Polyethylene Glycols/toxicity , Animals , Brain/drug effects , Brain/metabolism , Cholesterol, HDL/blood , Cholesterol, LDL/blood , Comet Assay , Creatinine/blood , Genomic Instability/drug effects , Hyperlipidemias/chemically induced , Hypolipidemic Agents/pharmacology , Kidney/drug effects , Kidney/metabolism , Liver/drug effects , Liver/metabolism , Male , Micronucleus Tests , Oxidoreductases/metabolism , Rats , Rats, Wistar , Triglycerides/blood , Urea/blood
SELECTION OF CITATIONS
SEARCH DETAIL
...