Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Brain Behav Immun ; 95: 287-298, 2021 07.
Article in English | MEDLINE | ID: mdl-33838250

ABSTRACT

Sepsis survivors show long-term impairments, including alterations in memory and executive function. Evidence suggests that systemic inflammation contributes to the progression of Alzheimers disease (AD), but the mechanisms involved in this process are still unclear. Boosted (trained) and diminished (tolerant) innate immune memory has been described in peripheral immune cells after sepsis. However, the occurrence of long-term innate immune memory in the post-septic brain is fully unexplored. Here, we demonstrate that sepsis causes long-lasting trained innate immune memory in the mouse brain, leading to an increased susceptibility to Aß oligomers (AßO), central neurotoxins found in AD. Hippocampal microglia from sepsis-surviving mice shift to an amoeboid/phagocytic morphological profile when exposed to low amounts of AßO, and this event was accompanied by the upregulation of several pro-inflammatory proteins (IL-1ß, IL-6, INF-γ and P2X7 receptor) in the mouse hippocampus, suggesting that a trained innate immune memory occurs in the brain after sepsis. Brain exposure to low amounts of AßO increased microglial phagocytic ability against hippocampal synapses. Pharmacological blockage of brain phagocytic cells or microglial depletion, using minocycline and colony stimulating factor 1 receptor inhibitor (PLX3397), respectively, prevents cognitive dysfunction induced by AßO in sepsis-surviving mice. Altogether, our findings suggest that sepsis induces a long-lasting trained innate immune memory in the mouse brain, leading to an increased susceptibility to AßO-induced neurotoxicity and cognitive impairment.


Subject(s)
Alzheimer Disease , Sepsis , Amyloid beta-Peptides/metabolism , Animals , Hippocampus/metabolism , Immunologic Memory , Mice , Microglia/metabolism
2.
Nat Commun ; 10(1): 3890, 2019 09 05.
Article in English | MEDLINE | ID: mdl-31488835

ABSTRACT

Neurological complications affecting the central nervous system have been reported in adult patients infected by Zika virus (ZIKV) but the underlying mechanisms remain unknown. Here, we report that ZIKV replicates in human and mouse adult brain tissue, targeting mature neurons. ZIKV preferentially targets memory-related brain regions, inhibits hippocampal long-term potentiation and induces memory impairment in adult mice. TNF-α upregulation, microgliosis and upregulation of complement system proteins, C1q and C3, are induced by ZIKV infection. Microglia are found to engulf hippocampal presynaptic terminals during acute infection. Neutralization of TNF-α signaling, blockage of microglial activation or of C1q/C3 prevent synapse and memory impairment in ZIKV-infected mice. Results suggest that ZIKV induces synapse and memory dysfunction via aberrant activation of TNF-α, microglia and complement. Our findings establish a mechanism by which ZIKV affects the adult brain, and point to the need of evaluating cognitive deficits as a potential comorbidity in ZIKV-infected adults.


Subject(s)
Brain/virology , Synapses/virology , Virus Replication , Zika Virus Infection/virology , Zika Virus/physiology , Animals , Behavior, Animal , Brain/metabolism , Brain/pathology , Complement System Proteins/metabolism , Disease Models, Animal , Hippocampus/metabolism , Humans , Inflammation , Learning , Male , Memory , Memory Disorders , Mice , Mice, Inbred C57BL , Mice, Knockout , Microglia/metabolism , Microglia/pathology , Neurons/virology , Presynaptic Terminals/metabolism , Receptors, Interleukin-1 Type I/genetics , Synapses/metabolism , Tumor Necrosis Factor-alpha/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...