Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
RSC Adv ; 12(16): 10163-10176, 2022 Mar 25.
Article in English | MEDLINE | ID: mdl-35424960

ABSTRACT

Catalytic pyrolysis of vegetable oil is one of the potential routes to convert oil to drop-in biofuels, known as renewable hydrocarbons. In this paper, we explored catalytic pyrolysis of coconut oil using SBA-15 impregnated with Ni in proportions of 1% to 5% to produce sustainable aviation fuel. The catalysts were synthesized, calcined and then characterized by XRD, FTIR, SEM, and EDS. In order to better understand the behavior of this process, thermal and kinetic studies were carried out by thermogravimetry. The TG curves of vegetable oil with (10%) and without catalysts were obtained at heating rates of 5, 15 and 20 °C min-1, in the temperature range between 30 and 600 °C. The kinetic parameters were calculated by the Ozawa-Flynn-Wall (OFW) and Kissinger-Akahira-Sunose (KAS) methods. In the kinetic study, lower heat rates promoted higher conversions and the KAS model suits the process. The results calculated for the OC sample using the two kinetic models showed an increase in the E a energy as the conversion progressed to a certain point. Catalytic pyrolysis experiments were performed in a one-stage tubular reactor at 500 °C with a catalyst loading of 10 wt% on the basis of mass of oil. The catalyst with 5% Ni showed greater presence of hydrocarbons and greater formation of water, indicating that the deoxygenation process occurred through decarbonylation. With this, the present study was successful in the development of methodologies for obtaining hydrocarbons with a composition close to that of drop-in fuels, compared to the process carried out with vegetable oil in the absence of catalysts.

2.
RSC Adv ; 11(1): 555-564, 2020 Dec 21.
Article in English | MEDLINE | ID: mdl-35423027

ABSTRACT

The present work aims to evaluate the potential of Al-MCM-41 and Ni/Al-MCM-41 catalysts for the production of renewable hydrocarbons through the fast pyrolysis of palm oil. Al-MCM-41 mesoporous material was synthesized by the hydrothermal route. The Ni/Al-MCM-41 catalyst was obtained by the wet impregnation method of the Al-MCM-41 material (support) previously synthesized with 2.3% metal in relation to the support mass. The thermal pyrolysis of palm oil yielded many oxygenated compounds with a very high molecular mass. The pyrolysis of the oil under the action of Al-MCM-41 presented greater selectivity when compared to thermal pyrolysis, obtaining 63% of hydrocarbons in the C11-C15 region. The catalytic pyrolysis of the oil with Ni/Al-MCM-41 showed a high deoxygenation rate, obtaining a hydrocarbon percentage equal to 78%, in addition to obtaining a percentage of hydrocarbons equal to 46% in the region of interest, viz., C11-C15, demonstrating the potential of the Ni/Al-MCM-41 catalyst for renewable hydrocarbons production (bio-jet fuel) from palm oil.

SELECTION OF CITATIONS
SEARCH DETAIL
...