ABSTRACT
Additive manufacturing, particularly Stereolithography (SLA), has gained widespread attention thanks to its ability to produce intricate parts with high precision and customization capacity. Nevertheless, the inherent low mechanical properties of SLA-printed parts limit their use in high-value applications. One approach to enhance these properties involves the incorporation of nanomaterials, with graphene oxide (GO) being a widely studied option. However, the characterization of SLA-printed GO nanocomposites under various stress loadings remains underexplored in the literature, despite being essential for evaluating their mechanical performance in applications. This study aimed to address this gap by synthesizing GO and incorporating it into a commercial SLA resin at different concentrations (0.2, 0.5, and 1 wt.%). Printed specimens were subjected to pure tension, combined stresses, and pure shear stress modes for comprehensive mechanical characterization. Additionally, failure criteria were provided using the Drucker--Prager model.
ABSTRACT
Bioplastics hold significant promise in replacing conventional plastic materials, linked to various serious issues such as fossil resource consumption, microplastic formation, non-degradability, and limited end-of-life options. Among bioplastics, polyhydroxyalkanoates (PHA) emerge as an intriguing class, with poly(3-hydroxybutyrate) (P3HB) being the most utilized. The extensive application of P3HB encounters a challenge due to its high production costs, prompting the investigation of sustainable alternatives, including the utilization of waste and new production routes involving CO2 and CH4. This study provides a valuable comparison of two P3HBs synthesized through distinct routes: one via cyanobacteria (Synechocystis sp. PCC 6714) for photoautotrophic production and the other via methanotrophic bacteria (Methylocystis sp. GB 25) for chemoautotrophic growth. This research evaluates the thermal and mechanical properties, including the aging effect over 21 days, demonstrating that both P3HBs are comparable, exhibiting physical properties similar to standard P3HBs. The results highlight the promising potential of P3HBs obtained through alternative routes as biomaterials, thereby contributing to the transition toward more sustainable alternatives to fossil polymers.
ABSTRACT
In 2021, global petroleum-based plastic production reached over 400 million metric tons (Mt), and the accumulation of these non-biodegradable plastics in the environment is a worldwide concern. Polyhydroxybutyrate (PHB) offers many advantages over traditional petroleum-based plastics, being biobased, completely biodegradable, and non-toxic. However, its production and use are still challenging due to its low deformation capacity and narrow processing window. In this work, two linear-chain polyester oligomers were used as plasticizers to improve the processability and properties of PHB. Thermal analyses, XRD, and polarized optical microscopy were performed to evaluate the plasticizing effect on the PHB and the reflection on the mechanical behavior. Both oligomers acted as PHB plasticizers, with a reduction in Tg and Tm as a function of the plasticizer concentration, which can make it easier to handle the material in thermal processing and reduce the probability of thermal degradation. Plasticizer 2 proved to be the most promising between the two with an optimized condition of 20%, in which there was a decrease in elastic modulus of up to 72% and an increase in the maximum elongation of 467%.
ABSTRACT
Several efforts have been dedicated to the development of lignin-based polyurethanes (PU) in recent years. The low and heterogeneous reactivity of lignin hydroxyl groups towards diisocyanates, arising from their highly complex chemical structure, limits the application of this biopolymer in PU synthesis. Besides the well-known differences in the reactivity of aliphatic and aromatic hydroxyl groups, experimental work in which the reactivity of both types of hydroxyl, especially the aromatic ones present in syringyl (S-unit), guaiacyl (G-unit), and p-hydroxyphenyl (H-unit) building units are considered and compared, is still lacking in the literature. In this work, the hydroxyl reactivity of two kraft lignin grades towards 4,4'-diphenylmethane diisocyanate (MDI) was investigated. 31P NMR allowed the monitoring of the reactivity of each hydroxyl group in the lignin structure. FTIR spectra revealed the evolution of peaks related to hydroxyl consumption and urethane formation. These results might support new PU developments, including the use of unmodified lignin and the synthesis of MDI-functionalized biopolymers or prepolymers.