Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
2.
Biotechnol J ; 14(8): e1800716, 2019 Aug.
Article in English | MEDLINE | ID: mdl-30945467

ABSTRACT

Mesenchymal stromal cells (MSC) hold great promise for tissue engineering applications and cell-based therapies. Large cell doses (>1 × 106 cells kg-1 ) and Good Manufacturing Practices (GMP)-compliant processes are however required for clinical purposes. Here, a serum- and xenogeneic-free (S/XF) microcarrier-based culture system is established for the expansion of human umbilical cord matrix (UCM)- and adipose tissue (AT)-derived MSC using the Vertical-Wheel system (PBS-0.1 MAG; PBS Biotech). UCM and AT MSC are expanded to maximum cell densities of 5.3 ± 0.4 × 105 cell mL-1 (n = 3) and 3.6 ± 0.7 × 105 cell mL-1 (n = 3), respectively, after 7 days of culture, while maintaining their identity, according to standard criteria. An economic evaluation of the process transfer from T-flasks to PBS-0.1 MAG shows a reduction in the costs associated with the production of a dose for an average 70 kg adult patient (i.e., 70 million cells). Costs decrease from $17.0 K to $11.1 K for UCM MSC and from $21.5 K to $11.1 K for AT MSC, proving that the transition to Vertical-Wheel reactors provides a cost-effective alternative for MSC expansion. The present work reports the establishment of a scalable and cost-effective culture platform for the manufacturing of UCM and AT MSC in a S/XF microcarrier-based system.


Subject(s)
Bioreactors , Cell Culture Techniques/economics , Cell Culture Techniques/instrumentation , Mesenchymal Stem Cells , Cell Culture Techniques/methods , Humans
SELECTION OF CITATIONS
SEARCH DETAIL
...