Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Environ Sci Pollut Res Int ; 30(20): 58412-58427, 2023 Apr.
Article in English | MEDLINE | ID: mdl-36991202

ABSTRACT

The performance of an electrochemically assisted anoxic-oxic membrane bioreactor (A/O-eMBR) was assessed as an alternative for azo dye (Remazol Brilhant Violet (RBV)) removal from simulated textile wastewater. The A/O-eMBR was operated under three experimental conditions (runs I, II, and III), in which different solids retention time (SRT) (45 and 20 d) and exposure mode to electric current (6'ON/30'OFF and 6'ON/12'OFF) were assessed. The reactor exhibited excellent decolorization performance for all runs, with average dye removal efficiency ranging from 94.3 to 98.2%. Activity batch assays showed that the dye removal rate (DRR) decreased from 16.8 to 10.2 mg RBV L-1 h-1 when the SRT was reduced from 45 to 20 d, likely attributed to the lower biomass content under lower sludge age. At the electric current exposure mode of 6' ON/12'OFF, a more substantial decrease of DRR to 1.5 mg RBV L-1 h-1 was noticed, suggesting a possible inhibitory effect on dye removal via biodegradation. By reducing the SRT to 20 d, a worse mixed liquor filterability condition was observed, with a membrane fouling rate (MFR) of 0.979 kPa d-1. In contrast, using the electric current exposure mode of 6'ON/12'OFF resulted in lower membrane fouling propensity, with an MFR of 0.333 kPa d-1. A more attractive cost-benefit ratio for dye removal was obtained using the exposure mode of 6'ON/30'OFF, for which the energy demand was estimated at 21.9-22.6 kWh kg dye-1 removed, almost two times lower than that observed for the mode of 6'ON/12'OFF.


Subject(s)
Sewage , Wastewater , Bioreactors , Electricity , Membranes, Artificial , Waste Disposal, Fluid/methods
2.
Environ Sci Pollut Res Int ; 23(7): 6244-52, 2016 Apr.
Article in English | MEDLINE | ID: mdl-26611629

ABSTRACT

This study evaluates the efficacy of a sanitary sewage treatment system, proposing post-treatment of the effluent generated by the upflow anaerobic sludge blanket UASB reactor, through a Fenton coagulation/oxidation ((ferric chloride (FC) or ferrous sulfate (FS) and peracetic acid (PAA)), followed by a double filtration system, composed of a gravel ascending drainage filter and a sand descending filter. Following the assessment of treatability, the system efficiency was evaluated using physicochemical and microbiological parameters. In all treatments performed in the pilot unit, total suspended solids (TSS) were completely removed, leading to a decrease in turbidity greater than 90% and close to 100% removal of total phosphorous. In the FC and PAA combination, the effluent was oxygenated prior to filtration, enabling a more significant removal of biochemical oxygen demand (BOD), which characterizes aerobic degradation even in a quick sand filter. The treatments carried out in the presence of the PAA oxidizing agent showed a more significant bleaching of the effluent. Concerning the microbiological parameters, the simultaneous use of PAA and FC contributed to the partial inactivation of the assessed microorganisms. A 65% recovery of the effluent was obtained with the proposed treatment system, considering the volume employed in filter backwashing.


Subject(s)
Bacteria/metabolism , Waste Disposal, Fluid/methods , Anaerobiosis , Biodegradation, Environmental , Bioreactors/microbiology , Filtration , Oxidation-Reduction , Oxygen/analysis , Oxygen/metabolism , Phosphorus/analysis , Phosphorus/metabolism , Sewage/chemistry , Sewage/microbiology , Waste Disposal, Fluid/instrumentation
SELECTION OF CITATIONS
SEARCH DETAIL
...