Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Nutr Neurosci ; : 1-15, 2024 Jun 11.
Article in English | MEDLINE | ID: mdl-38861649

ABSTRACT

ABSTRACTThis study evaluated the effects of Rubus sp. extract on behavioral and neurochemical parameters in female mice submitted to experimental model of depression induced by lipopolysaccharide (LPS). The results indicated that Rubus sp. extract protected against depressive-like behavior induced by LPS. Moreover, the administration of Rubus sp. extract was effective in preventing the increase in reactive species and nitrites levels, as well as the decrease in catalase activity induced by LPS in the cerebral cortex. In the serum, the Rubus sp. extract was effective in preventing the decrease in catalase activity induced by LPS. Treatment with Rubus sp. extract attenuated the increase in acetylcholinesterase activity induced by LPS in the cerebral cortex. Finally, blackberry extract also downregulated IL-1ß levels in cerebral cortex. In conclusion, our findings demonstrated that treatment with Rubus sp. exerted antidepressant, antioxidant, anticholinesterase and anti-inflammatory effects in a model of depressive - like behavior induced by LPS in female mice. This highlights Rubus sp. as a potential therapeutic agent for individuals with major depressive disorder.

2.
J Food Biochem ; 45(10): e13920, 2021 10.
Article in English | MEDLINE | ID: mdl-34510463

ABSTRACT

In the present study, we aimed to investigate the protective effect of blueberry extract on behavioral, biochemical, and morphological changes in an experimental model of lipopolysaccharide (LPS)-induced depressive behavior. Male Swiss mice were pretreated with the vehicle, fluoxetine (20 mg/kg), or Vaccinium virgatum extract (100 mg/kg and 200 mg/kg) for seven days. On day 7, the animals were administered an LPS injection (0.83 mg/kg) or vehicle. Pretreatment with blueberry extract prevented LPS-induced depressive-like behavior. Moreover, LPS increased serum levels of total cholesterol; however, V. virgatum did not prevent the increase in total cholesterol levels. Furthermore, the extract prevented the LPS-induced elevation in serum reactive oxygen species. Also, V. virgatum extract increased the HDL cholesterol levels. Additionally, this extract prevented the LPS-induced decrease in glucose levels and serum adenosine deaminase activity. Collectively, V. virgatum extract has a potential protective effect against changes similar to those observed in patients with depression. PRACTICAL APPLICATIONS: Vaccinium virgatum, popularly known as blueberry, has been effective in preventing or treating neuropsychiatric diseases owing to its antioxidant, anti-inflammatory, and neuroprotective properties. Fluoxetine is a known drug used to treat depression; however, its adverse effects result in therapeutic non-adherence. Thus, the search for new natural compounds possessing antidepressant activities while lacking adverse effects is crucial for identifying novel therapeutic alternatives against depression.


Subject(s)
Blueberry Plants , Animals , Antidepressive Agents/pharmacology , Humans , Lipopolysaccharides/toxicity , Mice , Oxidative Stress , Plant Extracts/pharmacology , Plant Extracts/therapeutic use
3.
Neurochem Res ; 46(6): 1554-1566, 2021 Jun.
Article in English | MEDLINE | ID: mdl-33755857

ABSTRACT

Cholinergic system dysfunction, oxidative damage, and alterations in ion pump activity have been associated with memory loss and cognitive deficits in Alzheimer's disease. 1,3-thiazolidin-4-ones have emerged as a class of compounds with potential therapeutic effects due to their potent anticholinesterase activity. Accordingly, this study investigated the effect of the 2-(4-(methylthio)phenyl)-3-(3-(piperidin-1-yl)propyl)thiazolidin-4-one (DS12) compound on memory, cholinergic and oxidative stress parameters, ion pump activity, and serum biochemical markers in a scopolamine-induced memory deficit model. Male Wistar rats were divided into four groups: I-Control; II-Scopolamine; III-DS12 (5 mg/kg) + scopolamine; and IV-DS12 (10 mg/kg) + scopolamine. The animals from groups III and IV received DS12 diluted in canola oil and administered for 7 days by gavage. On the last day of treatment, scopolamine (1 mg/kg) was administered intraperitoneally (i.p.) 30 min after training in an inhibitory avoidance apparatus. Twenty-four hours after scopolamine administration, the animals were subjected to an inhibitory avoidance test and were thereafter euthanized. Scopolamine induced memory deficits, increased acetylcholinesterase activity and oxidative damage, and decreased Na+/K+-ATPase activity in cerebral cortex and hippocampus. Pretreatment with DS12 prevented these brain alterations. Scopolamine also induced an increase in acetylcholinesterase activity in lymphocytes and whereas butyrylcholinesterase in serum and treatment with DS12 prevented these changes. In animals treated with DS12, no changes were observed in renal and hepatic parameters when compared to the control group. In conclusion, DS12 emerged as an important multitarget compound capable of preventing neurochemical changes associated with memory deficits.


Subject(s)
Memory Disorders/prevention & control , Nootropic Agents/therapeutic use , Piperidines/therapeutic use , Thiazolidines/therapeutic use , Acetylcholinesterase/metabolism , Animals , Avoidance Learning/drug effects , Cerebral Cortex/drug effects , Cerebral Cortex/enzymology , Hippocampus/drug effects , Hippocampus/enzymology , Male , Memory Disorders/chemically induced , Memory Disorders/enzymology , Oxidative Stress/drug effects , Rats, Wistar , Scopolamine , Sodium-Potassium-Exchanging ATPase/metabolism
4.
Amino Acids ; 52(11-12): 1545-1558, 2020 Dec.
Article in English | MEDLINE | ID: mdl-33184691

ABSTRACT

We investigated the ability of tannic acid (TA) to prevent oxidative and nitrosative damage in the brain, liver, kidney, and serum of a rat model of acute hypermethioninemia. Young Wistar rats were divided into four groups: I (control), II (TA 30 mg/kg), III (methionine (Met) 0.4 g/kg + methionine sulfoxide (MetO) 0.1 g/kg), and IV (TA/Met + MetO). Rats in groups II and IV received TA orally for seven days, and rats of groups I and III received an equal volume of water. After pretreatment with TA, rats from groups II and IV received a single subcutaneous injection of Met + MetO, and were euthanized 3 h afterwards. In specific brain structures and the kidneys, we observed that Met + MetO led to increased reactive oxygen species (ROS), nitrite, and lipid peroxidation levels, followed by a reduction in thiol content and antioxidant enzyme activity. On the other hand, pretreatment with TA prevented both oxidative and nitrosative damage. In the serum, Met + MetO caused a decrease in the activity of antioxidant enzymes, which was again prevented by TA pretreatment. In contrast, in the liver, there was a reduction in ROS levels and an increase in total thiol content, which was accompanied by a reduction in catalase and superoxide dismutase activities in the Met + MetO group, and pretreatment with TA was able to prevent only the reduction in catalase activity. Conclusively, pretreatment with TA has proven effective in preventing oxidative and nitrosative changes caused by the administration of Met + MetO, and may thus represent an adjunctive therapeutic approach for treatment of hypermethioninemia.


Subject(s)
Amino Acid Metabolism, Inborn Errors/drug therapy , Glycine N-Methyltransferase/deficiency , Nitrosative Stress/drug effects , Oxidative Stress/drug effects , Tannins/pharmacology , Amino Acid Metabolism, Inborn Errors/metabolism , Amino Acid Metabolism, Inborn Errors/pathology , Animals , Brain/drug effects , Brain/metabolism , Glutathione Peroxidase/genetics , Glycine N-Methyltransferase/metabolism , Humans , Kidney/drug effects , Kidney/metabolism , Lipid Peroxidation/drug effects , Liver/drug effects , Liver/metabolism , Nitrosative Stress/genetics , Oxidation-Reduction/drug effects , Oxidative Stress/genetics , Rats , Reactive Oxygen Species/metabolism , Serum/drug effects , Serum/metabolism , Superoxide Dismutase/genetics
5.
Int J Dev Neurosci ; 80(4): 287-302, 2020 Jun.
Article in English | MEDLINE | ID: mdl-32181519

ABSTRACT

Autism is a neuropathology characterized by behavioral disorders. Considering that oxidative stress is involved in the pathophysiology of this disease, we evaluated the effects of quercetin, a flavonoid with antioxidant and neuroprotective properties, in an experimental model of autism induced by valproic acid (VPA). Twelve pregnant female rats were divided into four groups (control, quercetin, VPA, and VPA+quercetin). Quercetin (50 mg/kg) was administered orally to the animals from gestational days 6.5 to 18.5, and VPA (800 mg/kg) was administered orally in a single dosage on gestational day 12.5. Behavioral tests such as open field, social interaction, and tail flick nociceptive assays were performed on pups between 30 and 40 days old, after which the animals were euthanized. Cerebral cortex, hippocampus, striatum, and cerebellum were collected for evaluation of oxidative stress parameters. The pups exposed to VPA during the gestational period showed reduced weight gain, increased latency in the open field and tail flick tests, reduced time of social interaction, accompanied by changes in oxidative stress parameters mainly in the hippocampus and striatum. Prenatal treatment with quercetin prevented the behavioral changes and damage caused by oxidative stress, possibly due to its antioxidant action. Our findings demonstrated that quercetin has neuroprotective effects in an animal model of autism, suggesting that this natural molecule could be an important therapeutic agent for treatment of autism spectrum disorders (ASDs).


Subject(s)
Autistic Disorder/prevention & control , Autistic Disorder/psychology , Brain Chemistry , Porphobilinogen Synthase/metabolism , Quercetin/therapeutic use , Animals , Anticonvulsants , Autistic Disorder/chemically induced , Female , Motor Activity , Neuroprotective Agents/therapeutic use , Oxidative Stress , Pain Measurement , Pregnancy , Prenatal Exposure Delayed Effects , Rats , Rats, Wistar , Social Interaction , Valproic Acid , Weight Gain
6.
Amino Acids ; 52(3): 371-385, 2020 Mar.
Article in English | MEDLINE | ID: mdl-31902007

ABSTRACT

The aim of this study was to investigate the effect of the chronic administration of methionine (Met) and/or its metabolite, methionine sulfoxide (MetO), on the behavior and neurochemical parameters of young rats. Rats were treated with saline (control), Met (0.2-0.4 g/kg), MetO (0.05-0.1 g/kg), and/or a combination of Met + MetO, subcutaneously twice a day from postnatal day 6 (P6) to P28. The results showed that Met, MetO, and Met + MetO impaired short-term and spatial memories (P < 0.05), reduced rearing and grooming (P < 0.05), but did not alter locomotor activity (P > 0.05). Acetylcholinesterase activity was increased in the cerebral cortex, hippocampus, and striatum following Met and/or MetO (P < 0.05) treatment, while Na+, K+-ATPase activity was reduced in the hippocampus (P < 0.05). There was an increase in the level of thiobarbituric acid reactive substances (TBARS) in the cerebral cortex in Met-, MetO-, and Met + MetO-treated rats (P < 0.05). Met and/or MetO treatment reduced superoxide dismutase, catalase, and glutathione peroxidase activity, total thiol content, and nitrite levels, and increased reactive oxygen species and TBARS levels in the hippocampus and striatum (P < 0.05). Hippocampal brain-derived neurotrophic factor was reduced by MetO and Met + MetO compared with the control group. The number of NeuN-positive cells was decreased in the CA3 in Met + MetO group and in the dentate gyrus in the Met, MetO, and Met + MetO groups compared to control group (P < 0.05). Taken together, these findings further increase our understanding of changes in the brain in hypermethioninemia by elucidating behavioral alterations, biological mechanisms, and the vulnerability of brain function to high concentrations of Met and MetO.


Subject(s)
Amino Acid Metabolism, Inborn Errors/complications , Glycine N-Methyltransferase/deficiency , Hippocampus/pathology , Memory Disorders/etiology , Memory Disorders/pathology , Methionine/analogs & derivatives , Reactive Oxygen Species/metabolism , Acetylcholinesterase/metabolism , Amino Acid Metabolism, Inborn Errors/chemically induced , Amino Acid Metabolism, Inborn Errors/metabolism , Animals , Catalase/metabolism , Cerebral Cortex/drug effects , Cerebral Cortex/metabolism , Cerebral Cortex/pathology , Female , Glutathione Peroxidase/deficiency , Glycine N-Methyltransferase/metabolism , Hippocampus/drug effects , Hippocampus/metabolism , Male , Memory Disorders/metabolism , Memory, Short-Term/drug effects , Methionine/metabolism , Methionine/toxicity , Rats , Rats, Wistar , Spatial Memory/drug effects , Superoxide Dismutase/deficiency , Thiobarbituric Acid Reactive Substances/metabolism
7.
Neurotoxicology ; 77: 60-70, 2020 03.
Article in English | MEDLINE | ID: mdl-31883448

ABSTRACT

Hypermethioninemia is an inherited metabolic disorder characterized by high concentration of methionine (Met) and its metabolites such as methionine sulfoxide (Met-SO), which may lead to development of neurological alterations. The aim of this study was to investigate the in vitro effects of Met or Met-SO on viability, proliferation, morphology, and neurochemical parameters in primary culture of cortical astrocytes, after treatment with 1 or 2 mM Met or 0.5 mM Met-SO, for 24, 48, and 72 h. Met or Met-SO did not affect cell viability and proliferation but induced astrocyte hypertrophy. Acetylcholinesterase activity was increased, while Na+, K+-ATPase activity was decreased by 2 mM Met, Met-SO, or Met (1 and 2 mM) + Met-SO (P < 0.05). ATP and AMP hydrolysis was decreased by Met (1 and 2 mM), Met-SO and Met (1 and 2 mM) + Met-SO treatment, while ADP hydrolysis was enhanced by Met-SO and Met (1 and 2 mM) + Met-SO (P < 0.05). Superoxide dismutase activity was increased by Met-SO and Met (1 and 2 mM) + Met-SO (P < 0.05). Catalase and glutathione S-transferase activities were reduced by Met or Met-SO treatment for 48 and 72 h (P < 0.05). Reactive oxygen species and total thiol content was reduced by Met or Met-SO treatment for 24, 48, and 72 h while nitrite and thiobarbituric acid reactive substance levels were increased under the same experimental conditions (P < 0.05). High concentrations of Met and Met-SO do not cause cell death but induced changes in astrocyte function. These alterations in astrocytic homeostasis may be associated with neurological symptoms found in hypermethioninemia.


Subject(s)
Astrocytes , Methionine/analogs & derivatives , Methionine/toxicity , Signal Transduction/drug effects , Acetylcholinesterase/metabolism , Adenosine Triphosphate/metabolism , Animals , Astrocytes/drug effects , Astrocytes/metabolism , Astrocytes/pathology , Cells, Cultured , Oxidative Stress/drug effects , Rats, Wistar , Sodium-Potassium-Exchanging ATPase/metabolism
8.
Neurochem Res ; 45(2): 241-253, 2020 Feb.
Article in English | MEDLINE | ID: mdl-31845170

ABSTRACT

This work evaluated the in vitro effect of thiazolidin-4-ones on the activity of AChE (total and isoforms) isolated from the cerebral cortex, hippocampus, and lymphocytes. Kinetic parameters were evaluated and molecular docking was performed. Our results showed that thiazolidinones derived from 4-(methylthio)benzaldehyde (1) and from 4-(methylsulfonyl)benzaldehyde (2) were capable of inhibiting the AChE activity in vitro. Three compounds, two with a propylpiperidine (1b and 2b) moiety and one with a 3-(diethylamino)propyl (1c) moiety showed IC50 values of 13.81 µM, and 3.13 µM (1b), 55.36 µM and 44.33 µM (1c) for cerebral cortex and hippocampus, respectively, and 3.11 µM for both (2b). Enzyme kinetics revealed that the type of AChE inhibition was mixed. Compound 1b inhibited the G1 and G4 AChE isoforms, while compounds 1c and 2b selectively inhibited the G4 isoform. Molecular docking showed a possible three-dimensional fit into the enzyme. Our findings showed that these thiazolidin-4-ones, especially those containing the propylpiperidine core, have a potential cholinesterase inhibitory activity and can be considered good candidates for future Alzheimer's therapy.


Subject(s)
Acetylcholinesterase/metabolism , Cholinesterase Inhibitors/pharmacology , Thiazolidines/pharmacology , Acetylcholinesterase/chemistry , Animals , Catalytic Domain , Cholinesterase Inhibitors/chemical synthesis , Cholinesterase Inhibitors/metabolism , Hippocampus/drug effects , Humans , Isoenzymes/chemistry , Isoenzymes/metabolism , Kinetics , Lymphocytes/drug effects , Male , Molecular Docking Simulation , Molecular Structure , Protein Binding , Rats, Wistar , Thiazolidines/chemical synthesis , Thiazolidines/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...