Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Environ Monit Assess ; 195(12): 1494, 2023 Nov 20.
Article in English | MEDLINE | ID: mdl-37982899

ABSTRACT

Necro-leachate, a liquid released during cadaveric decomposition, is considered the main culprit for impacts on cemetery environments. The biogenic amines cadaverine and putrescine make up part of the composition of necro-leachate and have a certain toxicity to different organisms. Springtails are among the most used bioindicators to assess the impacts of soil contaminants. As there are no data on the acute and chronic toxicity of springtails exposed to cadaverine and putrescine, the objective of this study was to evaluate the toxic potential of both amines, under the behavioral effect of avoidance and reproduction in the species Folsomia candida. Springtails were exposed to soils contaminated with different concentrations of cadaverine and putrescine, and different mixtures of these amines. To evaluate the avoidance and reproduction test, the individuals were exposed for periods of 48 h and 28 days, respectively. The results obtained in the avoidance test showed that springtails exhibited a preference for the treated soil in both isolated and mixed treatments. The chronic evaluation assays showed that the reproduction was affected, particularly in the treatments with combined amines, resulting in a reduction in the total number of juveniles. From the results, it is possible to infer that the methods applied in this research have provided information that will contribute to a better understanding of the toxicity of putrefactive biogenic amines, since there exist few ecotoxicological studies carried out with these amines, and especially with those from cemetery environments.


Subject(s)
Arthropods , Putrescine , Humans , Animals , Cadaverine , Environmental Monitoring , Cadaver , Biogenic Amines/toxicity , Soil
2.
Environ Sci Pollut Res Int ; 29(53): 80983-80993, 2022 Nov.
Article in English | MEDLINE | ID: mdl-35727508

ABSTRACT

Eprinomectin, a veterinary drug within the family of avermectins, is widely used in the agricultural sector to combat a variety of parasites, mainly nematodes. However, only 10% of the drug is metabolized in the organism, so large quantities of the drug are released into the environment through urine and/or feces. Soil is the first and main environmental compartment to be contaminated by it, and nontargeted organisms can be affected. Thus, the present study aims to evaluate the phytotoxicity (through the evaluation of germination, root development, and germination speed) and genotoxicity (through an assessment of the induction of micronuclei and chromosomal aberrations) of eprinomectin. For the analyses, Allium cepa seeds were germinated in soil contaminated with a range of concentrations of eprinomectin: from 0.5 to 62.5 µg/g for the genotoxicity test and from 0.5 to 128.0 µg/g for the phytotoxicity test. The results showed that seed germination was not affected, but root development was affected at concentrations of 0.5 µg/g, 1.0 µg/g, 4.0 µg/g, 8.0 µg/g, 64.0 µg/g, and 128.0 µg/g, and germination speed was significantly changed at concentrations of 1.0 µg/g, 4.0 µg/g, 16.0 µg/g, 32.0 µg/g, and 64.0 µg/g. Significant differences in the mitotic index and genotoxicity index were observed only at concentrations of 2.5 µg/g and 12.5 µg/g, respectively. Only the 0.5 µg/g concentration did not show significant induction of micronuclei in the meristematic cells, but the damage observed at other concentrations did not persist in F1 cells. According to the results, eprinomectin is both phytotoxic and genotoxic, so the release of eprinomectin into the environment should be minimized.


Subject(s)
Onions , Veterinary Drugs , Veterinary Drugs/pharmacology , DNA Damage , Meristem , Chromosome Aberrations , Soil , Plant Roots
3.
Environ Sci Pollut Res Int ; 27(3): 3023-3033, 2020 Jan.
Article in English | MEDLINE | ID: mdl-31838689

ABSTRACT

Millipedes are organisms of the edaphic fauna and have been used as bioindicators for the evaluation of pollutants in the environment, as they are in constant contact with the soil. This study used the millipede Rhinocricus padbergi as surrogate to evaluate the toxicity of two metallic-insecticides that has been developed for leaf-cutting ants management. Millipedes were exposed in terrariums containing different concentrations of the metallic-insecticides and, after periods of 21 and 90 days, three individuals from each terrarium were dissected in order to remove the midgut, the organ where absorption of nutrients and, consequently, toxic substances occurs. The toxic action of the metallic-insecticides was analyzed through qualitative and semi-quantitative analysis of morphophysiological alterations and by quantitative analysis of the HSP70 stress protein. The results showed that the metallic-insecticides may increase HSP70 labeling, although not at all concentrations and periods of exposure. Histopathological alterations were not significant at any concentration, indicating that the cytoprotective action of HSP70 is able to prevent severe damage to the midgut. It is therefore suggested that the metallic-insecticides are not toxic to the species studied here as no toxicity was observed under the conditions tested. In addition, stress protein localization in midgut helps understand how morphophysiological processes can potentially be affected by pesticide exposure.


Subject(s)
Arthropods , Environmental Pollutants/toxicity , Insecticides/toxicity , Animals , HSP70 Heat-Shock Proteins/metabolism , Soil
4.
Ecotoxicol Environ Saf ; 142: 216-221, 2017 Aug.
Article in English | MEDLINE | ID: mdl-28412625

ABSTRACT

Vinasse, produced by several countries as a by-product of agricultural activity, has different alternatives for its reuse, mainly fertirrigation. Several monocultures, such as sugar cane and orange crops, produce this effluent. Sugar cane vinasse is already widely used in fertirrigation and orange vinasse has potential for this intention. However, its use as a fertilizer has caused great concern. Thus, ecotoxicological evaluation is extremely important in order to assess the possible effects on the environment. Therefore, the aim of this study was to evaluate the potential toxicity of vinasse of two different crops: sugar cane and orange. For this purpose, bioassays with Allium cepa as a test organism were performed with two vinasse dilutions (2.5% and 5%) to detect chromosomal aberrations and micronucleus induction. The results showed that both types of vinasse are able to induce chromosomal aberrations in meristematic cells, mainly nuclear and anaphasic bridges, suggesting genotoxic potential. The induction of micronuclei in cells of the F1 region suggests that the two residues have mutagenic potential. Thus, caution is advised when applying these effluents in the environment.


Subject(s)
Agricultural Irrigation , Citrus sinensis/chemistry , DNA Damage , Fertilizers/toxicity , Mutagens/toxicity , Onions/drug effects , Saccharum/chemistry , Industrial Waste , Onions/genetics
5.
Chemosphere ; 168: 1093-1099, 2017 Feb.
Article in English | MEDLINE | ID: mdl-27816288

ABSTRACT

In order to combat leaf-cutting ants, the pesticide sulfluramid used to be the most widely utilized active ingredient. However, its use was banned in 2009 by the Stockholm Convention, although some countries were allowed to continue using it. As an effective alternative to its replacement, researchers developed a metallic-insecticide system, which is a natural product linked to metal complexes. Thus, the aim of this study was to evaluate the ability of these new metallic-insecticides in change the genetic material of non-target organisms. The tests were performed utilizing chromosomal aberrations and micronucleus tests in the Allium cepa test system and the Trad-MCN test in Tradescantia pallida. To better understand the results, one of the components of the formula, 5-methyl-phenanthroline, was also analyzed according to the same parameters. To A. cepa, the results showed that one of the metallic insecticides induced cytotoxicity and genotoxicity at different concentrations, while the other metallic-insecticide showed chromosomal instability only at the highest concentration. The analysis of 5-methyl-phenanthroline revealed that it can be related with the positive results, since genotoxic effects were induced. In the Trad-MCN test, none of the metallic-insecticides showed genotoxic activity, although one of them induced more micronucleus formation.


Subject(s)
Insecticides/toxicity , Magnesium/toxicity , Mutagens/toxicity , Onions/drug effects , Phenanthrolines/toxicity , Tradescantia/drug effects , Animals , Ants , Chromosome Aberrations/chemically induced , DNA Damage , Micronucleus Tests , Onions/genetics , Tradescantia/genetics
6.
Environ Monit Assess ; 188(12): 694, 2016 Dec.
Article in English | MEDLINE | ID: mdl-27888426

ABSTRACT

The use of pesticides has increased worldwide, owing to the demand for products of good quality and to satisfy a growing population. Herbicides represent almost half of the total amount of pesticides used. Although important to the reduction of costs and an increase of productivity, their indiscriminate use, as well as that of the other pesticides, is a global environmental problem, since they affect the living organisms. To evaluate the damage caused by herbicides to the environment, different organisms have been used as bioindicators, especially higher plants, due to several advantages. This is a literature review on herbicidal actions in plant bioindicators, as assessed by genetic biomarkers. Also, the present manuscript aimed to characterize the main organisms (Allium cepa, Vicia faba and Tradescantia spp.) and the most used biomarkers (mitotic index, chromosome aberrations, micronuclei, sister chromatid exchange and mutations). We concluded that herbicides induce cytotoxicity and genotoxicity in the assessed bioindicators. The data corroborate the existing warnings of the risks that the indiscriminate and increasing use of pesticides poses to the environment and its biodiversity.


Subject(s)
Environmental Monitoring/methods , Genetic Markers , Herbicides/toxicity , Mutagenicity Tests , Plants/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL
...