Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Biomed Pharmacother ; 144: 112355, 2021 Dec.
Article in English | MEDLINE | ID: mdl-34794232

ABSTRACT

Antenatal corticosteroid therapy is used to reduce neonatal mortality in preterm infants but it is currently unknown whether this intervention affects lipid metabolism at the peripartum. This study aimed to evaluate if antenatal corticosteroid therapy in pregnant rats and women affects lipid metabolism during early lactation. We evaluated women at risk of preterm delivery that received corticosteroid therapy (CASE) and women that were not exposed to corticosteroid and were not at risk of preterm delivery (CONTROL). Samples were collected to measure serum and milk triacylglycerol (TAG) three days after delivery. Rats were treated with dexamethasone (DEX) between the 15th and the 20th days of pregnancy. Samples were collected at different days after delivery (L3, L8 and L14). TAG was measured in serum, liver and mammary gland (MG). TAG appearance rates were measured after tyloxapol injection and gavage with olive oil. We also evaluated the expression of key genes related to lipid metabolism in the liver and in the MG and hepatic phosphorylation of AMP-activated protein kinase (AMPK) and acetyl-CoA carboxylase (ACC). CASE volunteers delivered earlier than CONTROL but presented unaltered milk and serum TAG concentrations. Early lactating DEX rats exhibited increased TAG in serum, MG and milk. No changes in CD36 and LPL were detected in the MG and liver. Early lactating DEX rats displayed increased TAG appearance rate and reduced hepatic AMPK/ACC phosphorylation. Our data revealed that antenatal corticosteroid therapy reduces hepatic AMPK/ACC phosphorylation during early lactation that reflects in increased TAG concentration in serum, MG and milk.


Subject(s)
AMP-Activated Protein Kinases/metabolism , Adrenal Cortex Hormones/therapeutic use , Lactation/drug effects , Lipid Metabolism/drug effects , Acetyl-CoA Carboxylase/metabolism , Adult , Animals , Dexamethasone/pharmacology , Female , Gene Expression , Humans , Liver/metabolism , Male , Mammary Glands, Animal/metabolism , Milk, Human/chemistry , Obstetric Labor, Premature/prevention & control , Phosphorylation , Pregnancy , Rats , Rats, Wistar , Triglycerides/blood , Triglycerides/metabolism , Young Adult
2.
Biomed Pharmacother ; 141: 111807, 2021 Sep.
Article in English | MEDLINE | ID: mdl-34120066

ABSTRACT

Agomelatine (AGO) is an antidepressant drug with agonistic activity at melatonin receptor 1 (MT1) and MT2 and with neutral antagonistic activity at serotonin receptor 5-HT2C. Although experimental studies show that melatonin reduces hypertriglyceridemia and hepatic steatosis induced by excessive fructose intake, no studies have tested if AGO exerts similar actions. To address this issue we have treated male Wistar rats with fructose (15% in the drinking water) and/or AGO (40 mg/kg/day) for two weeks. AGO reduced body weight gain, feeding efficiency and hepatic lipid levels without affecting caloric intake in fructose-treated rats. AGO has also decreased very low-density lipoprotein (VLDL) production and circulating TAG levels after an oral load with olive oil. Accordingly, treatment with AGO reduced the hepatic expression of fatty acid synthase (Fasn), a limiting step for hepatic de novo lipogenesis (DNLG). The expression of apolipoprotein B (Apob) and microsomal triglyceride transfer protein (Mttp) in the ileum, two crucial proteins for intestinal lipoprotein production, were also downregulated by treatment with AGO. Altogether, the present data show that AGO mimics the metabolic benefits of melatonin when used in fructose-treated rats. This study also suggests that it is relevant to evaluate the potential of AGO to treat metabolic disorders in future clinical trials.


Subject(s)
Acetamides/pharmacology , Fatty Liver/drug therapy , Fructose/pharmacology , Hypolipidemic Agents/pharmacology , Receptors, Melatonin/agonists , Triglycerides/pharmacology , Acetamides/therapeutic use , Animals , Apolipoproteins B/metabolism , Body Weight/drug effects , Carrier Proteins/metabolism , Energy Intake , Hypertriglyceridemia , Hypolipidemic Agents/therapeutic use , Lipid Metabolism/drug effects , Lipoproteins, VLDL/blood , Liver/drug effects , Liver/metabolism , Male , Melatonin/metabolism , Olive Oil/pharmacology , Rats , Rats, Wistar , Triglycerides/therapeutic use
3.
Life Sci ; 265: 118765, 2021 Jan 15.
Article in English | MEDLINE | ID: mdl-33189820

ABSTRACT

The progeny of rats born and breastfed by mothers receiving dexamethasone (DEX) during pregnancy exhibits permanent reduction in body weight and adiposity but the precise mechanisms related to this programming are not fully understood. In order to clarify this issue, the present study investigated key aspects of lipoprotein production and lipid metabolism by the liver and the intestine that would explain the reduced adiposity seen in the adult offspring exposed to DEX in utero. Female Wistar rats were treated with DEX (0.1 mg/kg/day) between the 15th and the 21st days of pregnancy, while control mothers were treated with vehicle. Male offspring born to control mothers were nursed by either adoptive control mothers (CTL/CTL) or DEX-treated mothers (CTL/DEX). Male offspring born to DEX-treated mothers were nursed by either control mothers (DEX/CTL) or adoptive DEX-treated mothers (DEX/DEX). We found that only the male DEX/DEX offspring had reduced adiposity. Additionally, male DEX/DEX progeny had lower circulating triacylglycerol (TAG) levels only in fed-state. The four groups of offspring presented similar energy expenditure, respiratory quotient and very low-density lipoprotein (VLDL) production. On the other hand, DEX/DEX rats displayed reduced TAG levels after gavage with olive oil and reduced expression of fatty acid translocase Cd36 (Fat/Cd36) and peroxisome proliferator-activated receptor γ (Pparg) in the jejunum. Altogether, our study supports the notion that reduced fat absorption by the jejunum may contribute to the lower adiposity of the adult offspring born and breastfed by mothers treated with DEX during pregnancy.


Subject(s)
CD36 Antigens/metabolism , Dexamethasone/pharmacology , Fatty Acids/metabolism , Jejunum/drug effects , PPAR gamma/metabolism , Prenatal Exposure Delayed Effects/chemically induced , Animals , Calorimetry, Indirect , Cholesterol/metabolism , Female , Gastrointestinal Transit/drug effects , Jejunum/metabolism , Male , Polymerase Chain Reaction , Pregnancy , Rats , Rats, Wistar , Triglycerides/metabolism
4.
Life Sci ; 255: 117810, 2020 Aug 15.
Article in English | MEDLINE | ID: mdl-32473248

ABSTRACT

AIMS: The aim of the present study was to clarify if in utero exposure to DEX would affect the development of different types of pancreatic endocrine cells during postnatal life. MAIN METHODS: We investigated morphological and transcriptional features of both pancreatic ß- and α-cell populations within the pancreatic islets during the early postnatal life of rats born to mothers treated with DEX (0.1 mg/kg) from day 14 to 19 of pregnancy. Untreated pregnant Wistar rats of the same age (12-week-old) were used as control (CTL). Pups were euthanized on the 1st, 3rd and 21st (PND1, PND3 and PND21, respectively) days of life, regardless of sex. Serum insulin and glucagon levels were also evaluated. KEY FINDINGS: Rats born to DEX-treated mothers exhibited increased pancreatic α-cell mass, circulating glucagon levels and Gcg, Pax6, MafB and Nkx2.2 expression. Rats born to DEX-treated mothers also presented a rise in serum insulin levels on the PND3 that was paralleled by reduced ß-cell mass. Such increase in serum insulin levels, instead, was associated with increased expression of genes associated to insulin secretion such as Gck and Slc2a2. SIGNIFICANCE: Altogether, the present data reveals yet unknown changes in endocrine pancreas during early postnatal life of rats exposed to DEX in utero. Such data may contribute to the understanding of the metabolic features of rats born to DEX-treated mothers.


Subject(s)
Dexamethasone/toxicity , Glucagon-Secreting Cells/drug effects , Glucocorticoids/toxicity , Insulin-Secreting Cells/drug effects , Animals , Dexamethasone/administration & dosage , Female , Gene Expression Regulation , Glucagon/blood , Glucagon-Secreting Cells/cytology , Glucocorticoids/administration & dosage , Homeobox Protein Nkx-2.2 , Insulin/blood , Insulin Secretion/physiology , Insulin-Secreting Cells/cytology , Male , Pregnancy , Prenatal Exposure Delayed Effects/physiopathology , Rats , Rats, Wistar
5.
Endocr Connect ; 9(4): 299-308, 2020 Apr.
Article in English | MEDLINE | ID: mdl-32182583

ABSTRACT

PURPOSE: Observational studies show that longer breastfeeding periods reduce maternal risk of type 2 diabetes mellitus. However, it is currently unknown if the long-term benefits of breastfeeding for maternal glucose homeostasis are linked to changes in the endocrine pancreas. METHODS: We presently evaluated functional, morphological and molecular aspects of the endocrine pancreas of mice subjected to two sequential cycles of pregnancy and lactation (L21). Age-matched mice not allowed to breastfeed (L0) and virgin mice were used as controls. RESULTS: L21 mice exhibited increased tolerance and increased glucose-stimulated insulin secretion (GSIS) by isolated islets. Pancreatic islets of L21 mice did not present evident morphological changes to justify the increased GSIS. On the other hand, islets of L21 mice exhibited a reduction in Cavb3 and Kir6.2 expression with concordant increased intracellular Ca2+ levels after challenge with glucose. CONCLUSION: Altogether, the present findings show the breastfeeding exerts long-term benefits for maternal endocrine pancreas by increasing intracellular Ca2+ levels and GSIS.

6.
Endocr Connect ; 8(2): 120-131, 2019 Feb 01.
Article in English | MEDLINE | ID: mdl-30768422

ABSTRACT

Pancreatic islets from pregnant rats develop a transitory increase in the pancreatic ß-cell proliferation rate and mass. Increased apoptosis during early lactation contributes to the rapid reversal of those morphological changes. Exposure to synthetic glucocorticoids during pregnancy has been previously reported to impair insulin secretion, but its impacts on pancreatic islet morphological changes during pregnancy and lactation have not been described. To address this issue, we assessed the morphological and molecular characteristics of pancreatic islets from rats that underwent undisturbed pregnancy (CTL) or were treated with dexamethasone between the 14th and 19th days of pregnancy (DEX). Pancreatic islets were analyzed on the 20th day of pregnancy (P20) and on the 3rd, 8th, 14th and 21st days of lactation (L3, L8, L14 and L21, respectively). Pancreatic islets from CTL rats exhibited transitory increases in cellular proliferation and pancreatic ß-cell mass at P20, which were reversed at L3, when a transitory increase in apoptosis was observed. This was followed by the appearance of morphological features of pancreatic islet neogenesis at L8. Islets from DEX rats did not demonstrate an increase in apoptosis at L3, which coincided with an increase in the expression of M2 macrophage markers relative to M1 macrophage and T lymphocyte markers. Islets from DEX rats also did not exhibit the morphological characteristics of pancreatic islet neogenesis at L8. Our data demonstrate that maternal pancreatic islets undergo a renewal process during lactation that is impaired by exposure to DEX during pregnancy.

7.
Life Sci ; 217: 261-270, 2019 Jan 15.
Article in English | MEDLINE | ID: mdl-30562489

ABSTRACT

AIMS: The present investigation evaluated whether pregnancy followed by lactation exerts long-term impacts on maternal hepatic lipid metabolism. MAIN METHODS: Female mice were subjected to two pregnancies, after which they were either allowed to breastfeed their pups for 21 days (L21) or had their litter removed (L0). Age-matched virgin mice were used as controls (CTL). Three months after the second delivery, serum was collected for lipid profiling, and fragments of liver were used to assess lipid content and to evaluate the key steps of de novo non-esterified fatty acid (NEFA) synthesis, esterification and ß-oxidation, very low density lipoprotein (VLDL) assembly and secretion and autophagy. KEY FINDINGS: L0 exhibited a significant increase in hepatic TG and reduced apolipoprotein B-100 (ApoB-100) expression. L21 mice had increased ATP citrate lyase (ACLY) activity and reduced acetyl-CoA carboxylase (ACC) phosphorylation but no increased hepatic TG. On the other hand, L21 mice had reduced hepatic sequestosome 1 (SQSTM1/p62) levels. Increased high density lipoprotein (HDL) cholesterol and hepatic apolipoprotein A-1 (ApoA-1) expression were found exclusively in L21. SIGNIFICANCE: The present study reveals that long-term hepatic lipid accumulation is induced by the history of pregnancy without lactation. On the other hand, reduced SQSTM1/p62 levels indicate that increased autophagic flux during life may prevent hepatic fat in dams subjected to lactation. Lactation after pregnancy is also obligatory for a long-term increase in maternal HDL. The present data may contribute to the understanding of the mechanisms leading to elevated cardiometabolic risk in women limited to short periods of lactation.


Subject(s)
Lactation , Lipid Metabolism , Liver/metabolism , Animals , Fatty Acids, Nonesterified/analysis , Fatty Acids, Nonesterified/metabolism , Female , Male , Mice , Mice, Inbred C57BL , Oxidation-Reduction , Pregnancy , Triglycerides/analysis , Triglycerides/metabolism
8.
Sci Rep ; 7(1): 10367, 2017 09 04.
Article in English | MEDLINE | ID: mdl-28871187

ABSTRACT

We investigated the effect of dexamethasone during the last week of pregnancy on glucose and lipid metabolism in male offspring. Twelve-week old offspring were evaluated after fasting for 12-hours (physiological) and 60-hours (prolonged). Physiological fasting resulted in glucose intolerance, decreased glucose clearance after pyruvate load and increased PEPCK expression in rats born to dexamethasone-treated mothers (DEX). Prolonged fasting resulted in increased glucose tolerance and increased glucose clearance after pyruvate load in DEX. These modulations were accompanied by accumulation of hepatic triglycerides (TG). Sixty-hour fasted DEX also showed increased citrate synthase (CS) activity, ATP citrate lyase (ACLY) content, and pyruvate kinase 2 (pkm2), glucose transporter 1 (slc2a1) and lactate dehydrogenase-a (ldha) expressions. Hepatic AKT2 was increased in 60-hour fasted DEX, in parallel with reduced miRNAs targeting the AKT2 gene. Altogether, we show that metabolic programming by prenatal dexamethasone is characterized by an unexpected hepatic TG accumulation during prolonged fasting. The underlying mechanism may depend on increased hepatic glycolytic flux due to increased pkm2 expression and consequent conversion of pyruvate to non-esterified fatty acid synthesis due to increased CS activity and ACLY levels. Upregulation of AKT2 due to reduced miRNAs may serve as a permanent mechanism leading to increased pkm2 expression.


Subject(s)
Dexamethasone/pharmacology , Fasting/metabolism , Liver/metabolism , Maternal Exposure/adverse effects , Prenatal Exposure Delayed Effects , Triglycerides/metabolism , Animals , Biomarkers , Female , Glucose/metabolism , Glucose Intolerance , Liver Function Tests , Pregnancy , Proto-Oncogene Proteins c-akt/metabolism , Rats , Time Factors
SELECTION OF CITATIONS
SEARCH DETAIL
...