Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Nutrition ; 121: 112370, 2024 May.
Article in English | MEDLINE | ID: mdl-38401196

ABSTRACT

OBJECTIVE: The aim of this article is to investigate the effect of intermittent fasting, associated or not with coconut oil intake, on the gut-liver axis of obese rats. METHODS: A total of 50 rats were divided into five groups: control, obese, obese with intermittent fasting, obese with intermittent fasting plus coconut oil, and obese with caloric restriction. The rats were induced to obesity with a high-sugar diet for 17 wk. The respective interventions were carried out in the last 4 wk. RESULTS: The groups with intermittent fasting protocols had reduced total cholesterol (on average 54.31%), low-density lipoprotein (on average 53.39%), and triacylglycerols (on average 23.94%) versus the obese group; and the obese with intermittent fasting plus coconut oil group had the highest high-density lipoprotein compared with all groups. The obese with intermittent fasting plus coconut oil and obese with caloric restriction groups had lower metabolic load compared with the other groups. The obese group had high citric and succinic acid concentrations, which affected the hepatic tricarboxylic acid cycle, while all the interventions had reduced concentrations of these acids. No histologic changes were observed in the intestine or liver of the groups. CONCLUSION: Intermittent fasting, especially when associated with coconut oil, had effects comparable with caloric restriction in modulating the parameters of the gut-liver axis.


Subject(s)
Cocos , Intermittent Fasting , Rats , Animals , Coconut Oil/metabolism , Coconut Oil/pharmacology , Diet , Obesity/metabolism , Lipoproteins, HDL , Liver/metabolism , Plant Oils/metabolism
2.
Food Res Int ; 173(Pt 2): 113380, 2023 11.
Article in English | MEDLINE | ID: mdl-37803718

ABSTRACT

Acerola (Malpighia emarginata DC) by-product (ABP) has bioactive compounds that can provide antioxidant and hypolipidemic effects in vivo. In this study we aimed to evaluate the antioxidant potential of ABP on oxidative damage along the enterohepatic axis of rats fed a high-fat diet for 7 weeks. In addition, we analysed the phenolic compound profile in the enterohepatic axis, and the lipid accumulation in the liver, colon and liver tissue structure of high-fat diet-fed rats treated with fenofibrate drug (100 mg/kg) or ABP (400 mg/kg) via orogastric administration in the 4th to 7th weeks of the experiment. ABP had increased antioxidant potential in vitro and presented ascorbic acid (2022.06 µg/g), carotenoid (2.63 µg/g), and total phenolic compound (5366.44 µg/g) contents. The high-fat diet-fed rats that received ABP (compared to fenofibrate treatment) presented a non-significant reduction of 9.87% in guanine oxidation product, lower relative liver weight, degree of hepatic steatosis, and aspartate aminotransferase level in their blood. ABP also provided high-fat diet-fed rats: an increased amount of total phenolic compounds in caecal digesta (946.42 µg/g), faeces (3299.07 µg/g), colon (256.15 µg/g) and hepatic tissues (454.80 µg/g); higher total antioxidant capacity in plasma and colon; and lower lipid peroxidation in plasma, colonic and hepatic tissues. The results point to the potential antioxidant activity of ABP against oxidative damage along the enterohepatic axis caused by high-fat diet intake. The ABP had a greater protective effect on the healthy liver compared to fenofibrate treatment due to its bioactive compound content.


Subject(s)
Antioxidants , Fenofibrate , Rats , Animals , Antioxidants/pharmacology , Diet, High-Fat/adverse effects , Ascorbic Acid , Liver , Rutin
SELECTION OF CITATIONS
SEARCH DETAIL
...