Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Lett Appl Microbiol ; 75(2): 249-260, 2022 Aug.
Article in English | MEDLINE | ID: mdl-35429170

ABSTRACT

This study evaluated the effects of a fibre and phenolic-rich flour (IGF) prepared from Isabel grape by-products on the growth and metabolism of different probiotics and distinct bacterial populations part of the human intestinal microbiota during an in vitro colonic fermentation. IGF was submitted to simulated gastrointestinal digestion before use in the experiments. IGF favoured the growth of the probiotics Lactobacillus acidophilus La-05, L. casei L-26 and Bifidobacterium lactis Bb-12, with viable counts of >7 log CFU per ml, as well as caused decreases in pH values and increases in organic acid production in the growth medium during 48 h of cultivation. IGF increased the population of beneficial micro-organisms forming the human intestinal microbiota, particularly Lactobacillus spp., decreased the pH values, and increased the lactic acid and short-chain fatty acid (acetic, butyric and propionic acids) production during 24 h of in vitro colonic fermentation. These results indicate the potential prebiotic effects of IGF, which should represent a novel sustainable added-value ingredient with functional properties and gut-health benefits.


Subject(s)
Microbiota , Probiotics , Vitis , Fermentation , Flour , Humans , Lactobacillus acidophilus/metabolism , Phenols/analysis , Phenols/pharmacology , Probiotics/metabolism , Probiotics/pharmacology
2.
Lett Appl Microbiol ; 75(3): 565-577, 2022 Sep.
Article in English | MEDLINE | ID: mdl-34687563

ABSTRACT

This study aimed to evaluate the inhibitory effects of phenolic-rich extracts from acerola (Malpighia emarginata D.C., PEA), cashew apple (Anacardium occidentale L., PEC) and mango (Mangifera indica L., PEM) by-products on distinct enterotoxigenic Escherichia coli (ETEC) strains. The capability of PEA and PEC of impairing various physiological functions of ETEC strains was investigated with multiparametric flow cytometry. Procyanidin B2 , myricetin and p-coumaric acid were the major phenolic compounds in PEA, PEC and PEM, respectively. PEA and PEC had lower minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) (MIC: 31·25 mg ml-1 ; MBC: 62·5 mg ml-1 ) on ETEC strains than PEM (MIC and MIC: >1000 mg ml-1 ). PEA and PEC (15·6, 31·2, 62·5 mg ml-1 ) caused viable count reductions (P < 0·05) on ETEC strains after 24 h of exposure, notably the ≥3 log reductions caused by 62·5 mg ml-1 . The 24 h exposure of ETEC strains to PEA and PEC (31·2, 62·5 mg ml-1 ) led to high sizes of cell subpopulations with concomitant impairments in cell membrane polarization and permeability, as well as in enzymatic, respiratory and efflux activities. PEA and PEC are effective in inhibiting ETEC through a multi-target action mode with disturbance in different physiological functions.


Subject(s)
Anacardium , Enterotoxigenic Escherichia coli , Escherichia coli Infections , Mangifera , Phenols/pharmacology , Plant Extracts/pharmacology
3.
J Dairy Sci ; 104(1): 179-197, 2021 Jan.
Article in English | MEDLINE | ID: mdl-33131813

ABSTRACT

Cheeses are able to serve as suitable matrices for supplying probiotics to consumers, enabling appropriate conditions for bacteria to survive gastric transit and reach the gut, where they are assumed to promote beneficial processes. The present study aimed to evaluate the microbiological, immunological, and histological changes in the gut of Salmonella Enteritidis-challenged rats fed goat cheese supplemented with the probiotic strain Lactobacillus rhamnosus EM1107. Thirty male albino Wistar rats were randomly distributed into 5 experimental groups with 6 animals each: negative (NC) and positive (PtC) control groups, control goat cheese (CCh), goat cheese added with L. rhamnosus EM1107 (LrCh), and L. rhamnosus EM1107 only (EM1107). All animals, except NC group were challenged with Salmonella Enteritidis (109 cfu in 1 mL of saline through oral gavage). Microbial composition was assessed with high-throughput 16S rRNA sequencing by means of Illumina MiSeq (Illumina, San Diego, CA). Nuclear factor kappa B (NF-κB) from the animal cecum tissue was determined by real-time PCR and interleukins (TNF-α, IL-1ß, IL-10, and IFN-γ) by means of ELISA. Myeloperoxidase and malondialdehyde levels were determined biochemically. The administration of the L. rhamnosus EM1107 probiotic strain, either as a pure culture or added to a cheese matrix, was able to reduce Salmonella colonization in the intestinal lumen and lessen tissue damage compared with rats from PtC group. In addition, the use of cheese for the probiotic strain delivery (LrCh) was associated with a marked shift in the gut microbiota composition toward the increase of beneficial organisms such as Blautia and Lactobacillus and a reduction in NF-κB expression. These findings support our hypothesis that cheeses might be explored as functional matrices for the efficacious delivery of probiotic strains to consumers.


Subject(s)
Cheese/microbiology , Goats , Intestines/immunology , Intestines/microbiology , Lacticaseibacillus rhamnosus/metabolism , Probiotics , Salmonella enteritidis/immunology , Animals , Cecum/metabolism , Cecum/microbiology , Gastrointestinal Microbiome , Male , RNA, Ribosomal, 16S , Rats , Rats, Wistar
4.
J Appl Microbiol ; 130(4): 1323-1336, 2021 Apr.
Article in English | MEDLINE | ID: mdl-32808408

ABSTRACT

AIMS: This study evaluated whether by-products from industrial processing of acerola (Malpighia glabra L.; AB) and guava (Psidium guajava L.; GB) fruit may stimulate the growth and metabolism of probiotic Lactobacillus and Bifidobacterium and induce changes in human colonic microbiota. METHODS AND RESULTS: The ability of non-digested and digested AB or GB to stimulate the growth ad metabolism of Lactobacillus acidophilus LA-05, Lactobacillus casei L-26 and Bifidobacterium animalis subsp. lactis BB-12 was evaluated. Changes in populations of distinct bacterial groups of human colonic microbiota induced by digested AB and GB were evaluated using an in vitro colonic fermentation system. Non-digested and digested AB and GB favoured probiotic growth. No difference among counts of probiotics in media with glucose, fructooligosaccharides and non-digested and digested AB and GB was found during a 48-h cultivation. Cultivation of probiotics in media with non-digested and digested AB and GB resulted in decreased pH, increased organic acid production and sugar consumption over time. Digested AB and GB caused overall beneficial changes in abundance of Bifidobacterium spp., Lactobacillus-Enterococcus, Eubacterium rectall-Clostridium coccoides and Bacteroides-Provotella populations, besides to decrease the pH and increase the short-chain fatty acid production during a 24-h in vitro colonic fermentation. CONCLUSION: AB and GB could be novel prebiotic ingredients because they can stimulate the growth and metabolism of probiotics and induce overall beneficial changes in human colonic microbiota. SIGNIFICANCE AND IMPACT OF THE STUDY: AB and GB stimulated the growth and metabolism of probiotics, in addition to induce beneficial alterations in human colonic microbiota composition and increase short-chain fatty acid production. These results characterize AB and GB as potential prebiotic ingredients and fruit processing by-products as sources of added-value compounds.


Subject(s)
Bifidobacterium animalis/growth & development , Colon/microbiology , Lactobacillus/growth & development , Malpighiaceae/metabolism , Prebiotics/analysis , Probiotics/analysis , Psidium/metabolism , Waste Products/analysis , Bifidobacterium animalis/metabolism , Clostridiales , Fatty Acids, Volatile/metabolism , Fermentation , Fruit/chemistry , Fruit/metabolism , Gastrointestinal Microbiome , Humans , Lactobacillus/metabolism , Lactobacillus acidophilus/growth & development , Malpighiaceae/chemistry , Oligosaccharides/analysis , Oligosaccharides/metabolism , Probiotics/metabolism , Psidium/chemistry
5.
J Appl Microbiol ; 128(2): 376-386, 2020 Feb.
Article in English | MEDLINE | ID: mdl-31448524

ABSTRACT

AIMS: This study evaluated the efficacy of essential oil from Origanum vulgare L. (oregano; OVEO) and Rosmarinus officinalis L. (rosemary; ROEO) to inactivate sessile cells of Salmonella enterica serovar Enteritidis 86 (SE86) in young and mature biofilms formed on stainless steel. METHODS AND RESULTS: Ultrastructural alterations and damage in different physiological functions caused by OVEO and ROEO in noncultivable sessile cells of SE86 were investigated using scanning electron microscopy and flow cytometry. OVEO (2·5 µl ml-1 ) and ROEO (40 µl ml-1 ) were effective to eradicate young and mature biofilms formed by SE86 sessile cells on stainless steel surfaces; however, the efficacy varied with exposure time. OVEO and ROEO caused alterations in morphology of SE86 sessile cells, inducing the occurrence of bubbles or spots on cell surface. OVEO and ROEO compromised membrane polarization, permeability and efflux activity in noncultivable SE86 sessile cells. These findings show that OVEO and ROEO act by a multitarget mechanism on SE86 membrane functions. CONCLUSIONS: ROEO and OVEO showed efficacy to eradicate SE86 sessile cells in preformed biofilms on stainless steel, displaying a time-dependent effect and multitarget action mode on bacterial cell membrane. SIGNIFICANCE AND IMPACT OF THE STUDY: The study provides for the first time the effects of OVEO and ROEO on morphology and physiological functions of noncultivable sessile cells of S. Enteritidis biofilms preformed on stainless steel surfaces.


Subject(s)
Biofilms/drug effects , Oils, Volatile/pharmacology , Origanum/chemistry , Plant Oils/pharmacology , Rosmarinus/chemistry , Salmonella enteritidis/drug effects , Salmonella enteritidis/growth & development , Salmonella enteritidis/physiology , Stainless Steel/analysis
6.
Microb Pathog ; 130: 259-270, 2019 May.
Article in English | MEDLINE | ID: mdl-30917922

ABSTRACT

Fruits are among the main natural sources of phenolic compounds (PC). These compounds exert important antioxidant properties primarily associated with the presence of hydroxyl groups in their molecular structure. Additionally, the antibacterial effects of fruit phenolic-rich extracts or individual PC commonly found in fruits have been an emerging research focus in recent years. This review discusses by first time the available literature regarding the inhibitory effects of fruit PC on pathogenic bacteria, including not only their direct effects on bacterial growth and survival, but also their effects on virulence factors and antibiotic resistance, as well as the possible mechanism underlying these inhibitory properties. The results of the retrieved studies show overall that the antibacterial effects of fruit PC vary with the target bacteria, type of PC and length of exposure to these compounds. The type of solvent and procedures used for extraction and fruit cultivar also seem to influence the antibacterial effects of phenolic-rich fruit extracts. Fruit PC have shown wide-spectrum antibacterial properties besides being effective antibiotic resistance modifying agents in pathogenic bacteria and these effects have shown to be associated with interruption of efflux pump expression/function. Furthermore, fruit PC can cause down regulation of a variety of genes associated with virulence features in pathogenic bacteria. Results of available studies indicate the depolarization and alteration of membrane fluidity as mechanisms underlying the inhibition of pathogenic bacteria by fruit PC. These data reveal fruit PC have potential antimicrobial properties, which should be rationally exploited in solutions to control pathogenic bacteria.


Subject(s)
Anti-Bacterial Agents/pharmacology , Bacteria/drug effects , Fruit/chemistry , Phenols/pharmacology , Phytochemicals/pharmacology , Anti-Bacterial Agents/isolation & purification , Microbial Viability/drug effects , Phenols/isolation & purification , Phytochemicals/isolation & purification , Virulence/drug effects
7.
Genetica ; 145(1): 19-25, 2017 Feb.
Article in English | MEDLINE | ID: mdl-28160168

ABSTRACT

Cystic fibrosis (CF) is a common autosomal recessive disorder, being the p.F508del the most frequent mutation. Also, a nearby restriction fragment length polymorphism (RFLP) named XK (KM19 and XV2C) is non-randomly associated with specific CF alleles. Our aim was to analyze the occurrence of the p.F508del mutation and XK haplotypes in Afro-Brazilians CF patients and controls, since these data is available for the other two main ethnic groups found in Brazil (Euro-Brazilians and Brazilian Amerindians), contributing for the whole comprehension of these haplotypes in the Brazilian population. A total of 103 patients and 54 controls were studied. PCR and PCR-RFLP methodologies were used to identify the presence of the p.F508del and the XK haplotype in the subjects. The combined data show that 84.2% of p.F508del mutation is associated with haplotype B and only 15.8% with haplotype A; no other haplotypes were found to be associated with this mutation. Our data suggest that the occurrence of p.F508del mutation and haplotype B in Afro-Brazilian patients occurs probably due to admixture with Euro-descendants. Therefore this mutation and haplotype could be used as a admixture marker.


Subject(s)
Cystic Fibrosis Transmembrane Conductance Regulator/genetics , Cystic Fibrosis/genetics , Ethnicity/genetics , Haplotypes , Mutation , Alleles , Brazil , Case-Control Studies , Gene Frequency , Genetics, Population , Humans , Male
8.
Protein Expr Purif ; 19(1): 41-7, 2000 Jun.
Article in English | MEDLINE | ID: mdl-10833388

ABSTRACT

Snake venoms are rich sources of proteases that strongly affect the vascular system, by promoting blood coagulation, hemorrhage, and fibrinolysis. Hemorrhagic activity is mostly due to the enzymatic action of metalloproteases on capillary basement membrane components, such as collagen IV, laminin, and fibronectin. A few low-molecular-weight snake venom metalloproteases (svMP) have been described as being devoid of hemorrhagic activity, but they have strong direct-acting fibrinolytic activity that could be very helpful in thrombosis therapy. We have developed an expression system for production of a recombinant svMP from a cDNA (ACLPREF) coding for a small metalloprotease (ACLF) with three disulfide bonds from an Agkistrodon contortrix laticinctus (broad-banded copperhead) venom gland cDNA library. The mature protein-coding region was amplified by PCR and subcloned into the pET28a vector, and the resulting plasmid was used to transform BL21(DE3) Escherichia coli cells. Culture of the transformants at either 37 or 20 degrees C led to the overexpression of an insoluble and inactive 30-kDa protein after 1.0 mM IPTG induction. The expressed protein (rACLF) was recovered from inclusion bodies with 6 M buffered urea solution and purified on a nickel-Sepharose column followed by gel filtration chromatography, both under denaturing conditions. After treatment with dithiothreitol, protein refolding was performed by gradual removal of the denaturing agent by dialysis. The refolded recombinant protein was active in fibrin-agarose plates. The purified protein achieved a conformation similar to that of the native enzyme as judged by circular dichroism analysis.


Subject(s)
Agkistrodon/metabolism , Crotalid Venoms/chemistry , Metalloendopeptidases/chemistry , Protein Folding , Animals , Chromatography, Agarose , Chromatography, Gel , Circular Dichroism , Disulfides , Dithiothreitol , Escherichia coli/genetics , Escherichia coli/metabolism , Fibrinolytic Agents/chemistry , Fibrinolytic Agents/isolation & purification , Fibrinolytic Agents/metabolism , Hemorrhage/chemically induced , Inclusion Bodies/metabolism , Metalloendopeptidases/isolation & purification , Metalloendopeptidases/metabolism , Mice , Protein Structure, Secondary , Recombinant Proteins/chemistry , Recombinant Proteins/isolation & purification , Recombinant Proteins/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...