Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
J Pharm Sci ; 112(12): 3120-3130, 2023 12.
Article in English | MEDLINE | ID: mdl-37451318

ABSTRACT

Though ferulic acid presents great hypoglycemic potential, it possesses limited aqueous solubility, and low oral bioavailability. When associated with metformin, the first-choice drug in Type 2 diabetes treatment, FA demonstrates synergistic hypoglycemic effects, however, it also causes certain undesirable dose-related effects. This study aimed to develop a new ferulic acid - metformin multicomponent system, and incorporate it into a solid dosage form with improved biopharmaceutical parameters. A novel metformin: ferulate (1:1) salt (MFS) was produced, which was properly characterized using differing analytical techniques, including single crystal analysis. Also during the course of the study, a new polymorph of the metformin free base was observed. The MFS was obtained using solvent evaporation methods, which achieved high yields in reproducible process, as well as a 740-fold increase in ferulic acid aqueous solubility. The MFS tablets developed met quality control requirements for this dosage form, as well as revealing excellent performance in vitro dissolution tests, presenting dissolution efficiency values of 95.4 ± 0.5%. Additionally, physicochemical instability was not observed in a study at 40 °C for 3 months for both MFS powder and its tablet form. The MFS product developed is a promising candidate for further Type 2 diabetes clinical study.


Subject(s)
Biological Products , Coumaric Acids , Diabetes Mellitus, Type 2 , Metformin , Humans , Metformin/chemistry , Diabetes Mellitus, Type 2/drug therapy , Hypoglycemic Agents/chemistry , Solubility , Tablets , Sodium Chloride
2.
Article in English | MEDLINE | ID: mdl-36417111

ABSTRACT

This study evaluated the stability of a novel nutraceutical formulation composed of the probiotic Limosilactobacillus fermentum 296, quercetin (QUE), and resveratrol (RES) (LFQR) under different storage conditions. The effects of different relative humidities (RH; 11, 22, and 33%) and storage temperatures (refrigeration temperature -4 °C and room temperature -25 °C) on the stability of LFQR were evaluated through the determination of thermal stability, viable cell counts, bacterial physiological status, antioxidant capacity, and contents of QUE and RES during long-term storage. RH did not affect endothermic reactions and mass reduction in LFQR. After a 15-day-humidification period, L. fermentum 296 had higher viable cell counts in LFQR under refrigeration temperature storage when compared to room temperature storage regardless of the RH. The physiological status of L. fermentum 296 in LFQR was overall similar during 90 days of storage (11% RH) under refrigeration and room temperature. L. fermentum 296 had the highest viable cell counts (> 6 log CFU/g) in LFQR up to day 90 of refrigeration storage (11% RH). LFQR kept high contents of QUE and RES and maintained antioxidant capacity during 90 days of storage under refrigeration and room temperature. The results showed that the higher stability and functionality of LFQR during long-term storage should be guaranteed under 11% RH and refrigeration temperature.

3.
J Sep Sci ; 45(20): 3866-3873, 2022 Oct.
Article in English | MEDLINE | ID: mdl-36057131

ABSTRACT

Metformin is one of the most commonly used drugs in the world for the treatment of type 2 diabetes, while ferulic acid is a molecule that stands out for its antioxidant potential. Recent studies demonstrate hypoglycemic synergy between these molecules. The objective of this study is to develop and validate an analytical methodology by high-performance liquid chromatography for the simultaneous quantification of these drugs in pharmaceutical formulations. The method used an octadecylsilane column and a mobile phase composed of 6 mM sodium lauryl sulfate in 15 mM phosphate buffer:ACN (65:35). Ferulic acid and metformin were monitored at 232 nm, with a mobile phase flow rate of 1 ml/min and oven temperature at 40°C. The method was linear in the range of 5-25 µg/ml for both molecules. In the presence of degradation products, satisfactory selectivity was achieved. Accuracy values were close to 100% and standard deviations in precision were less than 2%. In the robustness evaluation, the proposed variations did not interfere with the quantification. Therefore, it is concluded that the present method can be safely applied to the quality control of ferulic acid and metformin raw materials, as well as when they are combined in pharmaceutical formulations.


Subject(s)
Diabetes Mellitus, Type 2 , Metformin , Humans , Metformin/analysis , Chromatography, High Pressure Liquid/methods , Diabetes Mellitus, Type 2/drug therapy , Pharmaceutical Preparations , Reproducibility of Results
4.
Daru ; 29(1): 147-158, 2021 Jun.
Article in English | MEDLINE | ID: mdl-33813721

ABSTRACT

Spray-dried extracts are prepared as powders or granules after solvent removal, which can be obtained in the presence or absence of pharmaceutical adjuvants. This work aimed to optimize the process of obtaining dried extracts of Peperomia pellucida L. (HBK) by spray drying. The characterization of the extract was performed by thermal analysis, specific surface area, particle size and high performance liquid chromatography (HPLC); then, capsules were developed for antimicrobial treatment, evaluating four bench lots by the determination of the angle of repose and time of flow, scanning electron microscopy, porosity and physicochemical quality control. There were no significant differences between the extracts obtained by spray drying at atomization temperatures of 140 °C, 160 °C and 180 °C, which was confirmed by thermal analysis. Specific surface area varied inversely with the mean particle size. Regarding the marker content by HPLC, no significant differences were found between the samples, although the flavonoid fraction was more stable at 160 °C. Bench lots (I to IV) were developed using the diluents Flowlac®, Starch® 1500, microcrystalline cellulose 250 and Cellactose® 80. Based on the results, the bench lot I, containing Flowlac®, was selected. The results of physicochemical quality control demonstrated that the selected formulation meets the pre-established parameters, and proving to be economically viable.


Subject(s)
Peperomia , Plant Extracts/chemistry , Chemistry, Pharmaceutical/methods , Drug Liberation , Particle Size , Porosity , Spray Drying , Surface Properties , Temperature
5.
J Pharm Sci ; 109(3): 1330-1337, 2020 03.
Article in English | MEDLINE | ID: mdl-31821823

ABSTRACT

Among the various strategies for increasing aqueous solubility of pharmaceutical substances, cocrystals have been emerging as a promising alternative. The ferulic acid (FEA) is a molecule with limited aqueous solubility, but with an interesting pharmacological activity, highlighting its antitumor potential. This study presents the characterization and physicochemical properties of a new cocrystal based on FEA and nicotinamide (NIC). The FEA-NIC cocrystal was obtained by solvent evaporation technique and physicochemically characterized by differential scanning calorimetry, powder X-ray diffraction, Fourier transform infrared spectroscopy, solid-state nuclear magnetic resonance and scanning electron microscopy. The content determination and dissolution profile in different media were analyzed by high-performance liquid chromatography. The results obtained with the characterization techniques indicated the obtainment of an anhydrous cocrystal of FEA and NIC at a 1:1 molar ratio. The method was reproducible and obtained a high yield, of approximately 99%. In addition, a 70% increase in the FEA solubility in the cocrystal and a better dissolution performance than the physical mixture in pH 6.8 were achieved.


Subject(s)
Niacinamide , Calorimetry, Differential Scanning , Coumaric Acids , Crystallization , Powder Diffraction , Solubility , Spectroscopy, Fourier Transform Infrared , X-Ray Diffraction
6.
J Anal Methods Chem ; 2016: 7528297, 2016.
Article in English | MEDLINE | ID: mdl-27579215

ABSTRACT

Momordica charantia is a species cultivated throughout the world and widely used in folk medicine, and its medicinal benefits are well documented, especially its pharmacological properties, including antimicrobial activities. Analytical methods have been used to aid in the characterization of compounds derived from plant drug extracts and their products. This paper developed a methodological model to evaluate the integrity of the vegetable drug M. charantia in different particle sizes, using different analytical methods. M. charantia was collected in the semiarid region of Paraíba, Brazil. The herbal medicine raw material derived from the leaves and fruits in different particle sizes was analyzed using thermoanalytical techniques as thermogravimetry (TG) and differential thermal analysis (DTA), pyrolysis coupled to gas chromatography/mass spectrometry (PYR-GC/MS), and nuclear magnetic resonance ((1)H NMR), in addition to the determination of antimicrobial activity. The different particle surface area among the samples was differentiated by the techniques. DTA and TG were used for assessing thermal and kinetic parameters and PYR-GC/MS was used for degradation products chromatographic identification through the pyrograms. The infusions obtained from the fruit and leaves of Momordica charantia presented antimicrobial activity.

7.
AAPS PharmSciTech ; 11(3): 1391-6, 2010 Sep.
Article in English | MEDLINE | ID: mdl-20824514

ABSTRACT

This work aimed the studies of physicochemical characterization, thermal stability, and compatibility of benznidazole (BNZ) drug by spectroscopy (NMR, IR), thermoanalytical (differential thermal analysis, differential scanning calorimetry, and thermogravimetry), and chromatographic (HPLC) techniques, beyond the analytical tools of Van't Hoff equation and Ozawa model. The compatibility study was conducted by binary mixtures (1:1, w/w) of the drug with microcrystalline cellulose 102 and 250, anhydrous lactose, and sodium starch glycolate. The physicochemical characterization confirmed data reported in scientific literature, guaranteeing authenticity of the analyzed raw material. The drug melts at 191.68°C (∆H, 119.71 J g(-1)), characteristic of a non-polymorphic raw material, and a main stage decomposition at 233.76-319.35°C (∆m, 43.32%) occurred, ending the study with almost all mass volatilized. The quantification of drug purity demonstrated a correlation of 99.63% between the data obtained by chromatographic (99.20%) and thermoanalytical technique (99.56%). The Arrhenius equation and Ozawa model showed a zero-order kinetic behavior for the drug decomposition, and a calculated provisional validity time was 2.37 years at 25°C. The compatibility study evidenced two possible chemical incompatibilities between BNZ and the tested excipients, both associated by the authors to the reaction of the BNZ's amine and a polymer carbohydrate's carbonile, being maillard reactions. The BNZ reaction with anhydrous lactose is more pronounced than with the sodium starch glycolate because the lactose has more free hydroxyl groups to undergo reduction by the drug. In this sense, this work guides the development of a new solid pharmaceutical product for Chagas disease treatment, with defined quality control parameters and physicochemical stability.


Subject(s)
Chagas Disease/drug therapy , Excipients/chemistry , Nitroimidazoles/chemistry , Drug Compounding/methods , Drug Evaluation, Preclinical , Drug Stability , Hot Temperature , Humans , Transition Temperature
SELECTION OF CITATIONS
SEARCH DETAIL
...