Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Front Bioeng Biotechnol ; 9: 674581, 2021.
Article in English | MEDLINE | ID: mdl-34513806

ABSTRACT

Encapsulation of biological components in hydrogels is a well described method for controlled drug delivery of proteins, tissue engineering and intestinal colonization with beneficial bacteria. Given the potential of tissue engineering in clinical practice, this study aimed to evaluate the feasibility of encapsulation of adipose tissue-derived mesenchymal stem cells (MSCs) of mules in sodium alginate. We evaluated capsule morphology and cell viability, immunophenotype and release after encapsulation. Circular and irregular pores were observed on the hydrogel surface, in which MSCs were present and alive. Capsules demonstrated good capacity of absorption of liquid and cell viability was consistently high through the time points, indicating proper nutrient diffusion. Flow cytometry showed stability of stem cell surface markers, whereas immunohistochemistry revealed the expression of CD44 and absence of MHC-II through 7 days of culture. Stem cell encapsulation in sodium alginate hydrogel is a feasible technique that does not compromise cell viability and preserves their undifferentiated status, becoming a relevant option to further studies of tridimensional culture systems and in vivo bioactive agents delivery.

3.
Stem Cell Res Ther ; 9(1): 259, 2018 10 07.
Article in English | MEDLINE | ID: mdl-30292232

ABSTRACT

The original article [1] contained a minor error regarding the mean diameter of the alginate microcapsules described in relation to Fig. 4 in the Results section. The microcapsules had an actual mean diameter of 3000 µm instead of 1000 µm as mistakenly mentioned in the original article.

5.
Exp Biol Med (Maywood) ; 241(13): 1410-5, 2016 07.
Article in English | MEDLINE | ID: mdl-26264444

ABSTRACT

Autologous fibrin gel is commonly used as a scaffold for filling defects in articular cartilage. This biomaterial can also be used as a sealant to control small hemorrhages and is especially helpful in situations where tissue reparation capacity is limited. In particular, fibrin can act as a scaffold for various cell types because it can accommodate cell migration, differentiation, and proliferation. Despite knowledge of the advantages of this biomaterial and mastery of the techniques required for its application, the durability of several types of sealant at the site of injury remains questionable. Due to the importance of such data for evaluating the quality and efficiency of fibrin gel formulations on its use as a scaffold, this study sought to analyze the heterologous fibrin sealant developed from the venom of Crotalus durissus terrificus using studies in ovine experimental models. The fibrin gel developed from the venom of this snake was shown to act as a safe, stable, and durable scaffold for up to seven days, without causing adverse side effects. Fibrin gel produced from the venom of the Crotalus durissus terrificus snake possesses many clinical and surgical uses. It presents the potential to be used as a biomaterial to help repair skin lesions or control bleeding, and it may also be used as a scaffold when applied together with various cell types. The intralesional use of the fibrin gel from the venom of this snake may improve surgical and clinical treatments in addition to being inexpensive and adequately consistent, durable, and stable. The new heterologous fibrin sealant is a scaffold candidate to cartilage repair in this study.


Subject(s)
Cartilage, Articular/drug effects , Crotalid Venoms/chemistry , Fibrin Tissue Adhesive/pharmacology , Tissue Scaffolds , Animals , Cartilage, Articular/pathology , Cartilage, Articular/physiology , Crotalid Venoms/isolation & purification , Crotalus , Magnetic Resonance Imaging , Sheep
SELECTION OF CITATIONS
SEARCH DETAIL
...