Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Main subject
Language
Publication year range
1.
3 Biotech ; 9(4): 155, 2019 Apr.
Article in English | MEDLINE | ID: mdl-30944802

ABSTRACT

In this study, Rhizophora mangle L. mangrove plants and plant growth-promoting bacteria were evaluated for their ability to degrade polycyclic aromatic hydrocarbons in diesel oil-contaminated sediment. The diesel-contaminated soil was sown with plant growth-promoting bacteria in the R. mangle L. rhizosphere and monitored for 120 days in a greenhouse. The plant growth-promoting bacteria Pseudomonas aeruginosa and Bacillus sp. were analyzed for their ability to degrade eight priority polycyclic aromatic hydrocarbons, achieving a removal rate for naphthalene (80%), acenaphthene (> 60%), anthracene (> 50%), benzo(a)anthracene (> 60%), benzo(a)pyrene (> 50%) and dibenzo(a,h)anthracene (> 90%) in the treatments with and without plants. R. mangle L. demonstrated a removal rate above 50% for acenaphthene and fluoranthene. The bacterial strains promoted the development of the plant propagule in 55% of sediment contaminated with diesel. Scanning electron microscopy revealed the formation of biofilms by the strains in the roots of the plants in contact with the diesel. Thus, the interaction between Rhizophora mangle L. and the bacterial strains (Bacillus sp. and P. aeruginosa) demonstrated the potential of the strains to degrade diesel and bioremediate mangroves impacted by diesel oil.

2.
Neotrop Entomol ; 36(6): 966-71, 2007.
Article in English | MEDLINE | ID: mdl-18246274

ABSTRACT

In tropical areas, where vector insects populations are particularly numerous, temperature usually range between 25 degrees C and 35 degrees C. Considering the importance of such temperature variation in determining mosquitoes population dynamics, in this work the developmental, eclosion and survival rates of the immature stages of Aedes albopictus (Skuse) were compared under constant 25, 30 and 35 degrees C (using acclimatized chambers) and environmental (25 degrees C to 29 degrees C) temperatures. The hatching rate was considered as total number of larvae recovered after 24h. The development period as well as larval and pupal survival rate were evaluated daily. Eclosion rate was significantly higher under environmental temperature than under the studied constant temperatures, suggesting that temperature variation may be an eclosion-stimulating factor. The mean eclosion time increased with the temperature, ranging from 2.8h (25 degrees C) to 5.2h (35 degrees C). The larval period was greatly variable inside each group, although it did not differ significantly amongst groups (11.0 +/- 4.19 days), with individuals showing longer larval stages in water at 35 degrees C (12.0 +/- 4.95 days) and environmental temperature (13.6 +/- 5.98 days). Oppositely, survival was strongly affected by the higher temperature, where only one individual lived through to adult phase. The results suggest that population of Ae. albopictus from Recife may be adapting to increasing of environmental temperatures and that the limiting temperature to larval development is around 35 degrees C.


Subject(s)
Aedes/growth & development , Animals , Larva/growth & development , Temperature , Water
SELECTION OF CITATIONS
SEARCH DETAIL
...