Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
BMC Bioinformatics ; 25(1): 231, 2024 Jul 05.
Article in English | MEDLINE | ID: mdl-38969970

ABSTRACT

PURPOSE: In this study, we present DeepVirusClassifier, a tool capable of accurately classifying Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) viral sequences among other subtypes of the coronaviridae family. This classification is achieved through a deep neural network model that relies on convolutional neural networks (CNNs). Since viruses within the same family share similar genetic and structural characteristics, the classification process becomes more challenging, necessitating more robust models. With the rapid evolution of viral genomes and the increasing need for timely classification, we aimed to provide a robust and efficient tool that could increase the accuracy of viral identification and classification processes. Contribute to advancing research in viral genomics and assist in surveilling emerging viral strains. METHODS: Based on a one-dimensional deep CNN, the proposed tool is capable of training and testing on the Coronaviridae family, including SARS-CoV-2. Our model's performance was assessed using various metrics, including F1-score and AUROC. Additionally, artificial mutation tests were conducted to evaluate the model's generalization ability across sequence variations. We also used the BLAST algorithm and conducted comprehensive processing time analyses for comparison. RESULTS: DeepVirusClassifier demonstrated exceptional performance across several evaluation metrics in the training and testing phases. Indicating its robust learning capacity. Notably, during testing on more than 10,000 viral sequences, the model exhibited a more than 99% sensitivity for sequences with fewer than 2000 mutations. The tool achieves superior accuracy and significantly reduced processing times compared to the Basic Local Alignment Search Tool algorithm. Furthermore, the results appear more reliable than the work discussed in the text, indicating that the tool has great potential to revolutionize viral genomic research. CONCLUSION: DeepVirusClassifier is a powerful tool for accurately classifying viral sequences, specifically focusing on SARS-CoV-2 and other subtypes within the Coronaviridae family. The superiority of our model becomes evident through rigorous evaluation and comparison with existing methods. Introducing artificial mutations into the sequences demonstrates the tool's ability to identify variations and significantly contributes to viral classification and genomic research. As viral surveillance becomes increasingly critical, our model holds promise in aiding rapid and accurate identification of emerging viral strains.


Subject(s)
COVID-19 , Deep Learning , Genome, Viral , SARS-CoV-2 , SARS-CoV-2/genetics , SARS-CoV-2/classification , Genome, Viral/genetics , COVID-19/virology , Coronaviridae/genetics , Coronaviridae/classification , Humans , Neural Networks, Computer
2.
BMC Bioinformatics ; 24(1): 92, 2023 Mar 11.
Article in English | MEDLINE | ID: mdl-36906520

ABSTRACT

BACKGROUND: In December 2019, the first case of COVID-19 was described in Wuhan, China, and by July 2022, there were already 540 million confirmed cases. Due to the rapid spread of the virus, the scientific community has made efforts to develop techniques for the viral classification of SARS-CoV-2. RESULTS: In this context, we developed a new proposal for gene sequence representation with Genomic Signal Processing techniques for the work presented in this paper. First, we applied the mapping approach to samples of six viral species of the Coronaviridae family, which belongs SARS-CoV-2 Virus. We then used the sequence downsized obtained by the method proposed in a deep learning architecture for viral classification, achieving an accuracy of 98.35%, 99.08%, and 99.69% for the 64, 128, and 256 sizes of the viral signatures, respectively, and obtaining 99.95% precision for the vectors with size 256. CONCLUSIONS: The classification results obtained, in comparison to the results produced using other state-of-the-art representation techniques, demonstrate that the proposed mapping can provide a satisfactory performance result with low computational memory and processing time costs.


Subject(s)
COVID-19 , Deep Learning , Humans , COVID-19/genetics , Genome, Viral , Genomics , SARS-CoV-2/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...