Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Environ Sci Pollut Res Int ; 30(6): 15241-15252, 2023 Feb.
Article in English | MEDLINE | ID: mdl-36166124

ABSTRACT

Reusing agro-industrial waste does not only help to mitigate environmental impact but also enables valorization through the development of new products. The aim is to enhance the physical and mechanical properties of particleboard panels produced with Eucalyptus wood and different proportions of waste products-coconut fiber (Cocos nucifera L.). Physical properties (density, water absorption, and thickness swelling) and mechanical properties (static bending and internal bond resistance) were assessed, and panels reinforced with coconut fiber showed the best qualities with higher density, greater dimensional stability, and less water absorption. Static bending resistance and internal bond resistance also increased significantly. This demonstrated the potential of achieving compatible characteristics for civil construction and furniture production through the inclusion of waste material. The impact of this research is obtained from the utilization of an important agro-industrial residue in the manufacture of permanent composites.


Subject(s)
Cocos , Wood , Wood/chemistry , Industrial Waste/analysis , Waste Products/analysis , Water/chemistry
2.
Environ Sci Pollut Res Int ; 27(5): 4858-4865, 2020 Feb.
Article in English | MEDLINE | ID: mdl-31845273

ABSTRACT

Adhesive-free wood-plastic composite panels made with lignocellulosic wastes, and recycled plastics can be a sustainable option for generating useful "green" products. The present work assessed the physical-mechanical properties of adhesive-free panels produced with Qualea sp. sawdust and recycled polypropylene (PP). Discarded PP packaging was used. The packages were washed and ground with a laboratory knife mill until particle size of 10 to 14 mesh. Qualea sp. sawdust was sieved to select particle size of 14 to 30 mesh. Four experimental treatments were assessed by varying the percentages of PP and sawdust, as follows, 60 and 40%, 70 and 30%, 80 and 20%, and 90 and 10%, in an entirely randomized design with 3 panels per treatment, totaling 12 panels. The mats were hot-pressed at 180 °C during 20 min, the first 10 min under pressure of 1.0 MPa and the remaining 10 min at 42 MPa. Physical-mechanical properties of the panels were obtained as follows: density, moisture content, water absorption, thickness swelling, moduli of elasticity and rupture, and Rockwell hardness. In general, an increase of the percentage of PP provided higher dimensional stability to the panels, but there was no significant influence on mechanical strength.


Subject(s)
Polypropylenes , Wood , Particle Size , Plastics , Polypropylenes/chemistry , Recycling
SELECTION OF CITATIONS
SEARCH DETAIL
...