Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Beilstein J Nanotechnol ; 15: 631-637, 2024.
Article in English | MEDLINE | ID: mdl-38887528

ABSTRACT

In this study, we present a novel approach for the exfoliation of titanium nitride (TiN) powders utilizing a rapid, facile, and environmentally friendly non-thermal plasma method. This method involves the use of an electric arc and nitrogen as the ambient gas at room temperature to generate ionized particles. These ionized species interact with the ceramic crystal of TiN, resulting in a pronounced structural expansion. The exfoliated TiN products were comprehensively characterized using transmission electron microscopy, X-ray diffraction, and Raman spectroscopy. Remarkably, the cubic crystal structure of TiN was effectively retained, while the (200) crystal plane d-spacing increased from 2.08 to 3.09 Å, accompanied by a reduction in crystallite size and alterations in Raman vibrational modes. Collectively, these findings provide compelling evidence for the successful exfoliation of TiN structures using our innovative non-thermal plasma method, opening up exciting possibilities for advanced material applications.

2.
Spectrochim Acta A Mol Biomol Spectrosc ; 217: 271-277, 2019 Jun 15.
Article in English | MEDLINE | ID: mdl-30947136

ABSTRACT

Molecularly imprinted polymers provide an excellent platform for the modification of selective electrodes for sensing applications. Herein, we present a novel modified carbon paste electrode (CPE) with a selective molecularly imprinted polymer (MIP) for recognition of sesquiterpene ß-caryophyllene, constituted of important plants oil-resins and extracts. The non-covalent MIP was synthesized using AA, EGDMA, and AIBN as a functional monomer, cross-linker and initiator agent, respectively. Structural and chemical characterization of the synthesized MIP was conducted through scanning electron microscopy (SEM), Fourier-transform infrared (FT-IR) spectroscopy, Raman spectroscopy and X-ray photoelectron spectroscopy (XPS). It was possible to verify the functional features of the synthesized MIP related to the extraction process of the template molecule. The CPE modified with MIP for sesquiterpene ß-caryophyllene recognition was characterized by electrochemical techniques as cyclic voltammetry (CV) and square wave voltammetry (SWV). The highest selective recognition electrode enables to detect concentrations in the range between 1.5 × 10-7 and 7.5 × 10-7 M, showing great potential for applications in monitoring content of sesquiterpene ß-caryophyllene in technological processes and for predicting the quality of extracts, oils, and resins of plants.


Subject(s)
Anti-Inflammatory Agents, Non-Steroidal/analysis , Biosensing Techniques/methods , Electrochemical Techniques/methods , Molecular Imprinting/methods , Polymers/chemistry , Sesquiterpenes/analysis , Anti-Inflammatory Agents, Non-Steroidal/chemistry , Electrodes , Limit of Detection , Polycyclic Sesquiterpenes , Sesquiterpenes/chemistry
3.
AMB Express ; 7(1): 31, 2017 Dec.
Article in English | MEDLINE | ID: mdl-28144889

ABSTRACT

The present work had the goal of screening a batch of 20 fungal strains, isolated from sugar cane plantation soil, in order to identify those capable of biosynthesis of silver nanoparticles. These nanoparticles are known to have a large and effective application in clinical microbiology. Four strains were found to be capable of biosynthesis of silver nanoparticles. The biosynthesised nanoparticles were characterised by UV-vis spectroscopy, scanning electron microscopy, EDX, and XRD. They were found to have an average size of 30-100 nm, a regular round shape, and potential antimicrobial activity against Escherichia coli, Staphylococcus aureus, and Pseudomonas aeruginosa. The antimicrobial activity was found to be directly related to the nanoparticles concentration. Mycogenic synthesis of nanoparticles is a green biogenic process preferable to other alternatives. Because fungi are great producers of extracellular enzymes this process makes scaling-up an easier task with high importance for clinical microbiology on the fight against microbial resistance, as well as for other industrial applications.

SELECTION OF CITATIONS
SEARCH DETAIL
...