Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Acta Trop ; 209: 105535, 2020 Sep.
Article in English | MEDLINE | ID: mdl-32450137

ABSTRACT

Canine visceral leishmaniasis (CVL) has been the theme of several studies given the importance of dog as natural reservoir of the pathogen Leishmania infantum in endemic regions and its role on dissemination of CVL and human visceral Lesihmaniasis (VL). The current immunodiagnosis of CVL has limitations concerning accuracy, specificity and sensitivity. Therefore, improvements are required. rLiNTPDase2 has been previously highlighted as a new recombinant antigen from L. infantum to the CVL diagnosis by ELISA assay (rLiNTPDase2-ELISA). In this study, we aimed to evaluate rLiNTPDase2-ELISA in a Phase II study with 651 dog sera samples, also comparing it with methodologies previously established and used in epidemiology surveillance in Brazil, an endemic country of CVL and VL. The rLiNTPDase2-ELISA using standard control sera showed high capability to distinguish between positive and negative sera, sensitivity of 92.6% and specificity of 88.5%. The test was reproductive and the kappa statistics judgement "substantial agreement". rLiNTPDase2-ELISA does not show cross-reactivity with ehrlichiosis-reagent sera. However, we verified 15.3% of cross-reactivity with Chagas disease-reagent sera. The performance of rLiNTPDase2-ELISA was evaluated using sera samples from vaccinated dogs (Leish-Tec®). The results showed high agreement with parasitological and PCR results (sensitivity of 100.0% and specificity of 91.7%). Furthermore, we compared the performance of rLiNTPDase2-ELISA in CVL-reagent sera samples from endemic areas, which were previously diagnosed using other tests for CVL: immunofluorescent (IFI-LVC-Bio-Manguinhos), IFI-LVC-Bio-Manguinhos coupled to ELISA (EIE-LVC-Bio-Manguinhos) and the Rapid Dual Path Platform® (TR-DPP®-Bio-Manguinhos) coupled to EIE-LVC-Bio-Manguinhos. rLiNTPDase2-ELISA showed high level of concordance with IFI-LVC-Bio-Manguinhos (88.6%) and with IFI-LVC-Bio-Manguinhos coupled to EIE-LVC-Bio-Manguinhos (82.9%) but not with TR-DPP® -Bio-Manguinhos coupled to EIE-LVC-Bio-Manguinhos (33.3%), which casts doubts on the effectiveness of this latest test. In addition, the rLiNTPDase2 antigen adsorbed in 96-well plate was stable enough to be used at least for three months. Taken together, our data confirmed, by Phase II study using hundreds samples, the good potential of rLiNTPDase2-ELISA to be used in the field as a new diagnostic assay for CVL.


Subject(s)
Adenosine Triphosphatases/immunology , Antigens, Protozoan/immunology , Dog Diseases/diagnosis , Enzyme-Linked Immunosorbent Assay/methods , Leishmania infantum/immunology , Leishmaniasis, Visceral/veterinary , Animals , Cross Reactions/immunology , Dogs , Leishmaniasis, Visceral/diagnosis , Recombinant Proteins/immunology
2.
PLoS Negl Trop Dis ; 8(11): e3309, 2014 Nov.
Article in English | MEDLINE | ID: mdl-25393008

ABSTRACT

BACKGROUND: Visceral leishmaniasis is an important tropical disease, and Leishmania infantum chagasi (synonym of Leishmania infantum) is the main pathogenic agent of visceral leishmaniasis in the New World. Recently, ecto-nucleoside triphosphate diphosphohydrolases (E-NTPDases) were identified as enablers of infection and virulence factors in many pathogens. Two putative E-NTPDases (∼70 kDa and ∼45 kDa) have been found in the L. infantum genome. Here, we studied the ∼45 kDa E-NTPDase from L. infantum chagasi to describe its natural occurrence, biochemical characteristics and influence on macrophage infection. METHODOLOGY/PRINCIPAL FINDINGS: We used live L. infantum chagasi to demonstrate its natural ecto-nucleotidase activity. We then isolated, cloned and expressed recombinant rLicNTPDase-2 in bacterial system. The recombinant rLicNTPDase-2 hydrolyzed a wide variety of triphosphate and diphosphate nucleotides (GTP> GDP  =  UDP> ADP> UTP  =  ATP) in the presence of calcium or magnesium. In addition, rLicNTPDase-2 showed stable activity over a pH range of 6.0 to 9.0 and was partially inhibited by ARL67156 and suramin. Microscopic analyses revealed the presence of this protein on cell surfaces, vesicles, flagellae, flagellar pockets, kinetoplasts, mitochondria and nuclei. The blockade of E-NTPDases using antibodies and competition led to lower levels of parasite adhesion and infection of macrophages. Furthermore, immunohistochemistry showed the expression of E-NTPDases in amastigotes in the lymph nodes of naturally infected dogs from an area of endemic visceral leishmaniasis. CONCLUSIONS/SIGNIFICANCE: In this work, we cloned, expressed and characterized the NTPDase-2 from L. infantum chagasi and demonstrated that it functions as a genuine enzyme from the E-NTPDase/CD39 family. We showed that E-NTPDases are present on the surface of promastigotes and in other intracellular locations. We showed, for the first time, the broad expression of LicNTPDases in naturally infected dogs. Additionally, the blockade of NTPDases led to lower levels of in vitro adhesion and infection, suggesting that these proteins are possible targets for rational drug design.


Subject(s)
Apyrase/metabolism , Leishmania infantum/enzymology , Leishmaniasis, Visceral/parasitology , Macrophages/parasitology , Protozoan Proteins/metabolism , Amino Acid Sequence , Animals , Apyrase/chemistry , Apyrase/genetics , Cell Line , Dogs , Female , Leishmania infantum/chemistry , Leishmania infantum/cytology , Leishmania infantum/metabolism , Lymph Nodes/parasitology , Mice , Molecular Sequence Data , Phylogeny , Protozoan Proteins/chemistry , Protozoan Proteins/genetics , Rabbits , Recombinant Proteins/chemistry , Recombinant Proteins/genetics , Recombinant Proteins/metabolism , Sequence Alignment
3.
Acta Trop ; 125(1): 60-6, 2013 Jan.
Article in English | MEDLINE | ID: mdl-23022017

ABSTRACT

Canine visceral leishmaniasis is an important public health concern. In the epidemiological context of human visceral leishmaniasis, dogs are considered the main reservoir of Leishmania parasites; therefore, dogs must be epidemiologically monitored constantly in endemic areas. Furthermore, dog to human transmission has been correlated with emerging urbanization and increasing rates of leishmaniasis infection worldwide. Leishmania (Leishmania) infantum (L. chagasi) is the etiologic agent of visceral leishmaniasis in the New World. In this work, a new L. (L.) infantum (L. chagasi) recombinant antigen, named ATP diphosphohydrolase (rLic-NTPDase-2), intended for use in the immunodiagnosis of CVL was produced and validated. The extracellular domain of ATP diphosphohydrolase was cloned and expressed in the pET21b-Escherichia coli expression system. Indirect ELISA assays were used to detect the purified rLic-NTPDase-2 antigen using a standard canine sera library. This library contained CVL-positive samples, leishmaniasis-negative samples and samples from Trypanosoma cruzi-infected dogs. The results show a high sensitivity of 100% (95% CI=92.60-100.0%) and a high specificity of 100% (95% CI=86.77-100.0%), with a high degree of confidence (k=1). These findings demonstrate the potential use of this recombinant protein in immune diagnosis of canine leishmaniasis and open the possibility of its application to other diagnostic approaches, such as immunochromatography fast lateral flow assays and human leishmaniasis diagnosis.


Subject(s)
Adenosine Triphosphatases , Clinical Laboratory Techniques/methods , Dog Diseases/diagnosis , Leishmania infantum/isolation & purification , Leishmaniasis, Visceral/veterinary , Parasitology/methods , Veterinary Medicine/methods , Adenosine Triphosphatases/genetics , Animals , Antigens, Protozoan/genetics , Cloning, Molecular , DNA, Protozoan/chemistry , DNA, Protozoan/genetics , Dog Diseases/parasitology , Dogs , Enzyme-Linked Immunosorbent Assay/methods , Escherichia coli/genetics , Gene Expression , Leishmaniasis, Visceral/diagnosis , Molecular Sequence Data , Recombinant Proteins/genetics , Sensitivity and Specificity , Sequence Analysis, DNA
SELECTION OF CITATIONS
SEARCH DETAIL
...