Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 13 de 13
Filter
Add more filters










Publication year range
1.
Mol Cell Endocrinol ; 589: 112236, 2024 Aug 01.
Article in English | MEDLINE | ID: mdl-38608803

ABSTRACT

INTRODUCTION: High sucrose intake is linked to cardiovascular disease, a major global cause of mortality worldwide. Calcium mishandling and inflammation play crucial roles in cardiac disease pathophysiology. OBJECTIVE: Evaluate if sucrose-induced obesity is related to deterioration of myocardial function due to alterations in the calcium-handling proteins in association with proinflammatory cytokines. METHODS: Wistar rats were divided into control and sucrose groups. Over eight weeks, Sucrose group received 30% sucrose water. Cardiac function was determined in vivo using echocardiography and in vitro using papillary muscle assay. Western blotting was used to detect calcium handling protein; ELISA assay was used to assess TNF-α and IL-6 levels. RESULTS: Sucrose led to cardiac dysfunction. RYR2, SERCA2, NCX, pPBL Ser16 and L-type calcium channels were unchanged. However, pPBL-Thr17, and TNF-α levels were elevated in the S group. CONCLUSION: Sucrose induced cardiac dysfunction and decreased myocardial contractility in association with altered pPBL-Thr17 and elevated cardiac pro-inflammatory TNF-α.


Subject(s)
Calcium-Binding Proteins , Rats, Wistar , Tumor Necrosis Factor-alpha , Animals , Male , Rats , Calcium-Binding Proteins/metabolism , Interleukin-6/metabolism , Myocardial Contraction/drug effects , Myocardium/metabolism , Myocardium/pathology , Phosphorylation/drug effects , Sucrose/pharmacology , Tumor Necrosis Factor-alpha/metabolism
2.
J Cell Physiol ; 239(4): e31199, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38291668

ABSTRACT

The effects of exercise training (ET) on the heart of aortic stenosis (AS) rats are controversial and the mechanisms involved in alterations induced by ET have been poorly clarified. In this study, we analyzed the myocardial proteome to identify proteins modulated by moderate-intensity aerobic ET in rats with chronic supravalvular AS. Wistar rats were divided into four groups: sedentary control (C-Sed), exercised control (C-Ex), sedentary aortic stenosis (AS-Sed), and exercised AS (AS-Ex). ET consisted of five treadmill running sessions per week for 16 weeks. Statistical analysis was performed by ANOVA or Kruskal-Wallis and Goodman tests. Results were discussed at a significance level of 5%. At the end of the experiment, AS-Ex rats had higher functional capacity, lower blood lactate concentration, and better cardiac structural and left ventricular (LV) functional parameters than the AS-Sed. Myocardial proteome analysis showed that AS-Sed had higher relative protein abundance related to the glycolytic pathway, oxidative stress, and inflammation, and lower relative protein abundance related to beta-oxidation than C-Sed. AS-Ex had higher abundance of one protein related to mitochondrial biogenesis and lower relative protein abundance associated with oxidative stress and inflammation than AS-Sed. Proteomic data were validated for proteins related to lipid and glycolytic metabolism. Chronic pressure overload changes the abundance of myocardial proteins that are mainly involved in lipid and glycolytic energy metabolism in rats. Moderate-intensity aerobic training attenuates changes in proteins related to oxidative stress and inflammation and increases the COX4I1 protein, related to mitochondrial biogenesis. Protein changes are combined with improved functional capacity, cardiac remodeling, and LV function in AS rats.


Subject(s)
Aortic Valve Stenosis , Myocardium , Physical Conditioning, Animal , Proteome , Animals , Rats , Aortic Valve Stenosis/metabolism , Inflammation , Lipids , Physical Conditioning, Animal/methods , Proteomics , Rats, Wistar , Myocardium/metabolism
3.
J Cell Mol Med ; 27(19): 2956-2969, 2023 10.
Article in English | MEDLINE | ID: mdl-37654004

ABSTRACT

We employed an early training exercise program, immediately after recovery from surgery, and before severe cardiac hypertrophy, to study the underlying mechanism involved with the amelioration of cardiac dysfunction in aortic stenosis (AS) rats. As ET induces angiogenesis and oxygen support, we aimed to verify the effect of exercise on myocardial lipid metabolism disturbance. Wistar rats were divided into Sham, trained Sham (ShamT), AS and trained AS (AST). The exercise consisted of 5-week sessions of treadmill running for 16 weeks. Statistical analysis was conducted by anova or Kruskal-Wallis test and Goodman test. A global correlation between variables was also performed using a two-tailed Pearson's correlation test. AST rats displayed a higher functional capacity and a lower cardiac remodelling and dysfunction when compared to AS, as well as the myocardial capillary rarefaction was prevented. Regarding metabolic properties, immunoblotting and enzymatic assay raised beneficial effects of exercise on fatty acid transport and oxidation pathways. The correlation assessment indicated a positive correlation between variables of angiogenesis and FA utilisation, as well as between metabolism and echocardiographic parameters. In conclusion, early exercise improves exercise tolerance and attenuates cardiac structural and functional remodelling. In parallel, exercise attenuated myocardial capillary and lipid metabolism derangement in rats with aortic stenosis-induced heart failure.


Subject(s)
Aortic Valve Stenosis , Heart Failure , Physical Conditioning, Animal , Rats , Animals , Rats, Wistar , Lipid Metabolism , Heart Failure/metabolism
4.
Int J Mol Sci ; 24(15)2023 Aug 01.
Article in English | MEDLINE | ID: mdl-37569680

ABSTRACT

Aerobic exercise training (AET) has been used to manage heart disease. AET may totally or partially restore the activity and/or expression of proteins that regulate calcium (Ca2+) handling, optimize intracellular Ca2+ flow, and attenuate cardiac functional impairment in failing hearts. However, the literature presents conflicting data regarding the effects of AET on Ca2+ transit and cardiac function in rats with heart failure resulting from aortic stenosis (AoS). This study aimed to evaluate the impact of AET on Ca2+ handling and cardiac function in rats with heart failure due to AoS. Wistar rats were distributed into two groups: control (Sham; n = 61) and aortic stenosis (AoS; n = 44). After 18 weeks, the groups were redistributed into: non-exposed to exercise training (Sham, n = 28 and AoS, n = 22) and trained (Sham-ET, n = 33 and AoS-ET, n = 22) for 10 weeks. Treadmill exercise training was performed with a velocity equivalent to the lactate threshold. The cardiac function was analyzed by echocardiogram, isolated papillary muscles, and isolated cardiomyocytes. During assays of isolated papillary muscles and isolated cardiomyocytes, the Ca2+ concentrations were evaluated. The expression of regulatory proteins for diastolic Ca2+ was assessed via Western Blot. AET attenuated the diastolic dysfunction and improved the systolic function. AoS-ET animals presented an enhanced response to post-rest contraction and SERCA2a and L-type Ca2+ channel blockage compared to the AoS. Furthermore, AET was able to improve aspects of the mechanical function and the responsiveness of the myofilaments to the Ca2+ of the AoS-ET animals. AoS animals presented an alteration in the protein expression of SERCA2a and NCX, and AET restored SERCA2a and NCX levels near normal values. Therefore, AET increased SERCA2a activity and myofilament responsiveness to Ca2+ and improved the cellular Ca2+ influx mechanism, attenuating cardiac dysfunction at cellular, tissue, and chamber levels in animals with AoS and heart failure.


Subject(s)
Aortic Valve Stenosis , Heart Failure , Rats , Animals , Calcium/metabolism , Rats, Wistar , Heart Failure/etiology , Heart Failure/therapy , Heart Failure/metabolism , Myocytes, Cardiac/metabolism , Calcium, Dietary/metabolism , Aortic Valve Stenosis/metabolism , Exercise , Sarcoplasmic Reticulum Calcium-Transporting ATPases/metabolism
5.
Front Physiol ; 14: 1182303, 2023.
Article in English | MEDLINE | ID: mdl-37362442

ABSTRACT

We evaluated the influence of aerobic physical exercise (EX) on gene-encoding proteins associated with oxidative stress in diaphragm muscle of rats with aortic stenosis-induced heart failure (HF). Wistar male rats were divided into four groups: Control sedentary (C); Control exercise (C-Ex); Sedentary aortic stenosis (AS); Aortic stenosis exercise (AS-Ex). Exercised rats trained 5 times a week for 10 weeks on a treadmill. Statistical analysis was performed by ANOVA or Kruskal-Wallis test. In the final echocardiogram, animals with aortic stenosis subjected to exercise demonstrated improvement in systolic function compared to the sedentary aortic stenosis group. In diaphragm muscle, the activity of antioxidant enzymes, malondialdehyde malondialdehyde concentration, protein carbonylation, and protein expression of p65 and its inhibitor IκB did not differ between groups. Alterations in gene expression of sources that generate reactive species of oxygen were observed in AS-Ex group, which showed decreased mRNA abundance of NOX2 and NOX4 compared to the aortic stenosis group (p < 0.05). We concluded that aerobic exercise has a positive impact during heart failure, ameliorating systolic dysfunction and biomarkers of oxidative stress in diaphragm muscle of rats with aortic stenosis-induced heart failure.

6.
J Nutr Biochem ; 92: 108625, 2021 06.
Article in English | MEDLINE | ID: mdl-33705955

ABSTRACT

Metabolic syndrome (MetS) include obesity as a critical feature and is strongly associated with risk of cardiovascular disease (CVD). Insights into mechanisms involved in the pathophysiology of these clinical manifestations are essential for the development of therapeutic strategies. Thus, Western diets (WD) have been widely employed in diet-induced obesity (DIO) model. However, there are variations in fat and sugar proportions of such diets, making comparisons challenging. We aimed to assess the impact of two types of the WD on metabolic status and cardiac remodeling, to achieve a DIO model that better mimics the human pathogenesis of MetS-induced CVD. Male Wistar rats were distributed into three groups: control diet, Western diet fat (WDF), and Western diet sugar (WDS) for 41 weeks. Metabolic and inflammatory parameters and cardiac changes were characterized. WDF and WDS feeding promoted higher serum triglycerides, glucose intolerance, and insulin resistance, while just WDF presented inflammation in adipose tissue. WDF-fed rats showed increased catalase activity and malondialdehyde (MDA) and carbonyl protein levels, suggesting cardiac oxidative stress, while WDS-fed rats only raised MDA. Both WD equally elevated protein expressions involved in lipid metabolism, but only WDF downregulated the glycolysis pathway. Furthermore, the mechanical myocardial function was impaired in obese rats, being more relevant in WDF. In conclusion, both WD effectively triggered MetS features, although inflammation was detected just on the WDF-fed animals. Moreover, the WDF promoted a more pronounced functional, metabolic, and oxidative cardiac disorder, suggesting to be an adequate model for studying CVD in the scenario of MetS.


Subject(s)
Diet, Western/adverse effects , Metabolic Syndrome/etiology , Obesity/etiology , Ventricular Remodeling , Animals , Energy Metabolism , Glucose Intolerance/etiology , Glucose Intolerance/metabolism , Inflammation/etiology , Inflammation/metabolism , Male , Metabolic Syndrome/metabolism , Obesity/metabolism , Oxidative Stress , Rats, Wistar
7.
J Cardiovasc Transl Res ; 14(4): 674-684, 2021 08.
Article in English | MEDLINE | ID: mdl-32246321

ABSTRACT

Cirrhotic cardiomyopathy is a condition where liver cirrhosis is associated with cardiac dysfunction. Triggers and blockers of cirrhotic cardiomyopathy are poorly understood, which might compromise the prognosis of chronic liver disease patients. We tested whether exercise training would reduce liver damage induced by thioacetamide and prevent liver cirrhosis-associated cardiomyopathy. Wistar rats were divided into three groups: control, thioacetamide (TAA), or TAA plus exercise. Thioacetamide increased liver weight and serum alanine aminotransferase and aspartate aminotransferase levels. Also, TAA treatment was involved with hepatic nodule formation, fibrotic septa, inflammatory infiltration, and hepatocyte necrosis. The exercise group presented with a reduction in liver injury status. We found that liver injury was associated with disordered cardiac hypertrophy as well as diastolic and systolic dysfunction. Exercise training attenuated cirrhosis-associated cardiac remodeling and diastolic dysfunction and prevented systolic impairment. These results provided insights that exercise training can mitigate cirrhotic cardiomyopathy phenotype. Graphical Abstract Exercise training attenuated liver injury as well as cirrhosis-associated cardiac remodeling and diastolic dysfunction and prevented systolic impairment.


Subject(s)
Cardiomyopathies/prevention & control , Exercise Therapy , Liver Cirrhosis/therapy , Physical Conditioning, Human , Animals , Atrial Function, Left , Biomarkers/blood , Cardiomyopathies/chemically induced , Cardiomyopathies/pathology , Cardiomyopathies/physiopathology , Disease Models, Animal , Exercise Tolerance , Humans , Liver/enzymology , Liver/pathology , Liver Cirrhosis/chemically induced , Liver Cirrhosis/pathology , Male , Myocardium/pathology , Rats, Wistar , Thioacetamide , Ventricular Function, Left
8.
Cell Physiol Biochem ; 54(4): 719-735, 2020 Jul 31.
Article in English | MEDLINE | ID: mdl-32730701

ABSTRACT

BACKGROUND/AIMS: The beneficial effect of aerobic exercise training (ET) on cardiac remodeling caused by supravalvar aortic stenosis (AS) has been demonstrated in experimental studies; however, the mechanisms responsible for improving cardiac function are not entirely understood. We evaluated whether ET-generated cardioprotection in pressure-overloaded rats is dependent on cardiomyocyte proliferation, increased angiotensin-(1-7) (Ang-1-7) levels, and its receptor in the myocardium. METHODS: Eighteen weeks after ascending AS surgery, Wistar rats were randomly assigned to four groups: sedentary control (C-Sed), exercised control (C-Ex), sedentary aortic stenosis (AS-Sed) and exercised aortic stenosis (AS-Ex) groups. The moderate treadmill exercise protocol was performed for ten weeks. The functional capacity was assessed by treadmill exercise testing. Cardiac structure and function were evaluated by echocardiogram. Cardiomyocyte proliferation was evaluated by flow cytometry. Expression of cell cycle regulatory genes as CCND2, AURKB, CDK1, and MEIS1 was verified by RT-qPCR. Cardiac and plasma angiotensin I (Ang I), angiotensin II (Ang II), and Ang-(1-7) levels were analyzed by high-performance liquid chromatography (HPLC). The angiotensin-converting enzyme (ACE) activity was assessed by the fluorometric method and protein expression of AT1 and Mas receptors by Western blot. RESULTS: The AS-Ex group showed reduced left ventricular wall relative thickness and improved ejection fraction; also, it showed decreased gene expression of myocyte cell cycle regulators, ACE, Ang I, Ang II and Ang II/Ang-(1-7) ratio levels compared to AS-Sed group. However, ET did not induce alterations in Ang-(1-7) and cardiac Mas receptor expression and myocyte proliferation. CONCLUSION: Aerobic exercise training improves systolic function regardless of myocyte proliferation and Ang-(1-7)/Mas receptor levels. However, the ET negatively modulates the vasoconstrictor/hypertrophic axis (ACE/Ang II) and decreases the expression of negative regulatory genes of the cell cycle in cardiomyocytes of rats with supravalvular aortic stenosis.


Subject(s)
Angiotensin I/metabolism , Aortic Stenosis, Supravalvular/metabolism , Myocardium/metabolism , Myocytes, Cardiac/metabolism , Peptide Fragments/metabolism , Physical Conditioning, Animal/physiology , Renin-Angiotensin System/physiology , Angiotensin II/metabolism , Angiotensin-Converting Enzyme 2/metabolism , Animals , Aortic Stenosis, Supravalvular/enzymology , Aortic Stenosis, Supravalvular/genetics , Aurora Kinase B/genetics , Aurora Kinase B/metabolism , Cell Cycle/genetics , Cell Proliferation/physiology , Chromatography, High Pressure Liquid , Cyclin D2/genetics , Cyclin D2/metabolism , Echocardiography , Exercise Test , Male , Myeloid Ecotropic Viral Integration Site 1 Protein/genetics , Myeloid Ecotropic Viral Integration Site 1 Protein/metabolism , Rats , Rats, Wistar
9.
Cell Physiol Biochem ; 54(4): 665-681, 2020 Jul 08.
Article in English | MEDLINE | ID: mdl-32639114

ABSTRACT

BACKGROUND/AIMS: Aortic stenosis-induced chronic pressure overload leads to cardiac dysfunction and congestive heart failure. The pathophysiological mechanisms of the myocardial impairment are multifactorial and include maladaptive ß-adrenergic signaling. Exercise training (ET) has been used as a non-pharmacological therapy for heart failure management. The present study tested the hypothesis that exercise training attenuates diastolic dysfunction through ß-adrenergic signaling preservation. METHODS: Wistar rats were submitted to ascending aortic stenosis (AS) surgery, and after 18 weeks, a moderate aerobic exercise training protocol was performed for ten weeks. RESULTS: ET attenuated diastolic dysfunction, evaluated by echocardiogram and isolated papillary muscle (IPM) assay. Also, ET reduced features of heart failure, cross-sectional cardiomyocyte area, and exercise intolerance, assessed by treadmill exercise testing. The ß2 adrenergic receptor protein expression was increased in AS rats independently of exercise. Interestingly, ET restored the protein levels of phosphorylated phospholamban at Serine 16 and preserved the ß-adrenergic receptor responsiveness as visualized by the lower myocardial compliance decline and time to 50% tension development and relaxation during ß-adrenergic stimulation in the IPM than untrained rats. Additionally, AS rats presented higher levels of TNFα and iNOS, which were attenuated by ET. CONCLUSION: Moderate ET improves exercise tolerance, reduces heart failure features, and attenuates diastolic dysfunction. In the myocardium, ET decreases the cross-sectional area of the cardiomyocyte and preserves the ß-adrenergic responsiveness, which reveals that the adjustments in ß-adrenergic signaling contribute to the amelioration of cardiac dysfunction by mild exercise training in aortic stenosis rats.


Subject(s)
Aortic Stenosis, Supravalvular/metabolism , Heart Failure, Diastolic/therapy , Myocytes, Cardiac/metabolism , Physical Conditioning, Animal/physiology , Receptors, Adrenergic, beta/metabolism , Animals , Aortic Stenosis, Supravalvular/therapy , Calcium-Binding Proteins/metabolism , Echocardiography , Exercise Test , Male , Myocardium/metabolism , Myocytes, Cardiac/physiology , Nitric Oxide Synthase Type II/metabolism , Papillary Muscles/physiology , Phosphorylation , Rats , Rats, Wistar , Receptors, Adrenergic, beta/physiology , Signal Transduction/physiology , Tumor Necrosis Factor-alpha/metabolism
10.
Life Sci ; 252: 117650, 2020 Jul 01.
Article in English | MEDLINE | ID: mdl-32294475

ABSTRACT

It has been described that the cardiac dysfunction in the obesity model is because of collagen imbalance and that angiotensin II (Ang II) contributes to myocardial fibrosis. However, it remains undefined if changes in collagen I and III metabolism in obesity is due to the renin-angiotensin system (RAS) dysregulation from myocardium or excessive adipose tissue. AIM: This study aimed to verify whether the changes in myocardial collagen metabolism result from RAS deregulation of cardiac or adipose tissue in an obesity model. MAIN METHODS: Wistar rats were fed with control (CD) and high-fat (HFD) diets for 30 weeks. After the dietary intervention, animals were assigned to be treated with losartan at the 30 mg/kg/day dosage or kept untreated for an additional five weeks. KEY FINDINGS: HFD induced obesity, comorbidities, and cardiac collagen overexpression. The HFD group presented an increase in Ang II levels in both adipose tissue and plasma, as well as AT1 receptor expression in cardiac tissue. Of note, the myocardial Ang II was not changed in the HFD group. Losartan administration reduced some obesity-induced comorbidities regardless of weight loss. The AT1 receptor blockade also decreased the release of Ang II from adipose tissue and myocardial AT1 receptor and collagen. SIGNIFICANCE: It was seen that excessive adipose tissue is responsible for the exacerbated circulating Ang II, which induced cardiac fibrosis development.


Subject(s)
Adipose Tissue/metabolism , Angiotensin II/metabolism , Myocardium/pathology , Obesity/physiopathology , Angiotensin II Type 1 Receptor Blockers/pharmacology , Animals , Collagen Type I/metabolism , Collagen Type III/metabolism , Diet, High-Fat/adverse effects , Fibrosis , Losartan/pharmacology , Male , Myocardium/metabolism , Rats , Rats, Wistar , Renin-Angiotensin System/physiology
11.
Nutrients ; 11(9)2019 Aug 22.
Article in English | MEDLINE | ID: mdl-31443528

ABSTRACT

Severe food restriction (FR) impairs cardiac performance, although the causative mechanisms remain elusive. Since proteins associated with calcium handling may contribute to cardiac dysfunction, this study aimed to evaluate whether severe FR results in alterations in the expression and activity of Ca2+-handling proteins that contribute to impaired myocardial performance. Male 60-day-old Wistar-Kyoto rats were fed a control or restricted diet (50% reduction in the food consumed by the control group) for 90 days. Body weight, body fat pads, adiposity index, as well as the weights of the soleus muscle and lung, were obtained. Cardiac remodeling was assessed by morphological measures. The myocardial contractile performance was analyzed in isolated papillary muscles during the administration of extracellular Ca2+ and in the absence or presence of a sarcoplasmic reticulum Ca2+-ATPase (SERCA2a) specific blocker. The expression of Ca2+-handling regulatory proteins was analyzed via Western Blot. Severe FR resulted in a 50% decrease in body weight and adiposity measures. Cardiac morphometry was substantially altered, as heart weights were nearly twofold lower in FR rats. Papillary muscles isolated from FR hearts displayed mechanical dysfunction, including decreased developed tension and reduced contractility and relaxation. The administration of a SERCA2a blocker led to further decrements in contractile function in FR hearts, suggesting impaired SERCA2a activity. Moreover, the FR rats presented a lower expression of L-type Ca2+ channels. Therefore, myocardial dysfunction induced by severe food restriction is associated with changes in the calcium-handling properties in rats.


Subject(s)
Calcium Signaling , Calcium/metabolism , Caloric Restriction , Heart Diseases/etiology , Malnutrition/complications , Mitochondria, Heart/metabolism , Myocardial Contraction , Myocytes, Cardiac/metabolism , Papillary Muscles/metabolism , Adiposity , Animals , Calcium Channels, L-Type/metabolism , Disease Models, Animal , Heart Diseases/metabolism , Heart Diseases/pathology , Heart Diseases/physiopathology , Male , Malnutrition/metabolism , Malnutrition/pathology , Malnutrition/physiopathology , Mitochondria, Heart/pathology , Myocytes, Cardiac/pathology , Papillary Muscles/pathology , Papillary Muscles/physiopathology , Rats, Inbred WKY , Sarcoplasmic Reticulum Calcium-Transporting ATPases/metabolism , Weight Loss
12.
Antioxidants (Basel) ; 7(9)2018 Sep 08.
Article in English | MEDLINE | ID: mdl-30205562

ABSTRACT

Obesity is considered an important risk factor for several disorders, such as diabetes mellitus, systemic arterial hypertension, dyslipidemia, and atherosclerosis, which are associated with inflammation and oxidative stress as a trigger factor. Passiflora edulis contains important bioactive compounds, such as phenolics, carotenoids, vitamin C, and polyamines in pulp, leaves, seeds, and bark. Aim: To evaluate the effect of bark of Passiflora edulis (BPe) on body composition, and metabolic and oxidative stress parameters in genetically obese mice. Methods: Obese male db/db mice (n = 14 animals) received normal feeds and water ad libitum for 8 weeks. Then, animals were randomly divided to continue either receiving standard chow (obese, n = 7 (OB)) or feed with standard chow plus bark Passiflora edulis (BPe) (obese + BPe, n = 7 (OB + BPe)) for 8 more weeks, totaling 16 weeks. BPe was added to chow (7 g of BPe/kg of chow corresponding to 1.5 g/kg of body weight). The parameters evaluated in animals included food and caloric intake, body weight, body fat, plasma glucose, triglycerides, and total cholesterol. Malondialdehyde and antioxidant capacity were evaluated in plasma and organs. Groups were compared by Student t-test, with p < 0.05. Results: BPe reduced visceral and subcutaneous fat deposit and adiposity index, cholesterol and triglyceride levels, ameliorated the antioxidant capacity, and reduced malondialdehyde (MDA) levels. Conclusion: the bark of Passiflora edulis was effective in improving body composition, and metabolic and antioxidant parameters in obese mice.

13.
Pathophysiology ; 25(4): 373-379, 2018 Dec.
Article in English | MEDLINE | ID: mdl-30030016

ABSTRACT

Cardiac remodeling (CR) is a structural change of the heart due to chronic hemodynamic overload related to changes in both myocyte and extracellular matrix (ECM). We investigated that the imbalance of collagen V promotes cardiomyocyte apoptosis that contributes to heart failure and cell death. Aortic stenosis was induced surgically and male Wistar rats were randomized to 18 weeks (Sham 18 w, n = 12; AoS 18 w, n = 12) and severe of heart failure (Sham HF, n = 12; AoS HF, n = 12) groups. Functional and structural echocardiogram, immunohistochemistry for Ki-67, TUNEL assay and Immunofluorescence for collagen were performed. Our main results were: (1) Progressive reduction of cardiac functional capacity due to cardiac remodeling with decreased eject fraction in heart failure; (2) Imbalance of collagen deposition with increased, crowded and irregular collagen I in situ expression; (3) Dysregulation of dynamic control of collagen fibers with exposed epitopes of collagen V; (4) Additional apoptosis that are dependent to cardiac injury. The collagen V expression in cardiac remodeling is for the first time described and may be related to additional apoptosis and autoimmune response. Our findings suggest a critical role of collagen V in cardiac remodeling to modulate and promote heart failure and death.

SELECTION OF CITATIONS
SEARCH DETAIL
...