Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Neurosci Res ; 192: 37-47, 2023 Jul.
Article in English | MEDLINE | ID: mdl-36804600

ABSTRACT

The mammalian striatum has long been considered a homogeneous entity. However, neuroanatomical and histochemical studies reveal that the striatum is much more heterogeneous than previously suspected. The caudate (Cd) and putamen (Pu) are composed of two chemical compartments: the matrix and the striosomes. Striatal interneurons have been classified into a variety of morphological and neurochemical subtypes. In this study, we compared the distribution of multiple neurochemical markers in the striatum of marmosets and described the morphology of different types of striatum interneurons. The immunoreactivities of choline-acetyl transferase (ChAT), neuropeptide Y (NPY), nitric oxide synthase (NOS), calretinin (CR), parvalbumin (PV) were analyzed along the entire rostrocaudal extent of the marmoset striatum. Calbindin immunohistochemistry is useful in identifying medium spiny neurons (MSNs), with efficient soma staining. Based on the size of the CB-positive cells, considered medium-sized, as expected, cholinergic cells are larger in area and diameter than the other subpopulations investigated, followed by NOS, NPY, PV and CR. In adjacent CB and PV-stained sections, the matrix and striosomes were clearly distinguished. The matrix is strongly reactive to CB and PV neuropils, while the striosomes exhibit low reactivity, especially in the dorsal Cd. Therefore, we provide a detailed description morphology and distribution of striatal interneuron populations in a model as a valuable tool for studying neurodegenerative pathogenesis, progression and treatment strategies.


Subject(s)
Cadmium , Callithrix , Animals , S100 Calcium Binding Protein G/metabolism , Corpus Striatum/metabolism , Interneurons/metabolism , Calbindins , Nitric Oxide Synthase/metabolism , Parvalbumins/metabolism , Mammals
2.
J Chem Neuroanat ; 112: 101914, 2021 03.
Article in English | MEDLINE | ID: mdl-33388377

ABSTRACT

The location and distribution of the calcium-binding protein calbindin-D28k (CB) has been considered to be of great value as a neuronal marker for identifying distinct brain regions and discrete neuronal populations. In the amygdaloid complex (AC), the balance of excitatory and inhibitory inputs is controlled by CB immunoreactive interneurons. Alterations of inhibitory mechanisms in the AC may play a role in the emotional symptomatology of neurological diseases like Alzheimer's and psychiatric disorders like posttraumatic stress disorder. The present investigation examined the distribution and morphology of CB-containing neurons, neuropils and fibers in marmoset monkey ACs by using immunohistochemical and morphometrical methods. We recognized four types of CB cells in the AC: type 1 (multipolar), type 2 (spherical or bipolar), type 3 (pyramidal) and type 4 (halo cells), a cell type specific to the marmoset located in the basal and central nuclei. We detected CB cells in all nuclei and areas of the AC, where most of the cells were present in the deep nuclei (lateral, basal, accessory basal and paralaminar). In the superficial nuclei (the nucleus of the lateral olfactory tract, medial nucleus, periamygdaloid cortex and cortical nuclei), the CB cells were abundant in layers 2 and 3. The intercalated nuclei contained small densely packed cells. The CB neuropils were particularly dense in layer 1 of the superficial nuclei, in the deep nuclei and in the amygdalohippocampal area. Large CB immunoreactive neurons in the white matter and fibers with varicosities were found in the myelin tracts that surrounded the AC. These findings are the first step in determining whether some of these cells are specifically disrupted in pathological states.


Subject(s)
Amygdala/metabolism , Calbindins/metabolism , Neurons/metabolism , Amygdala/cytology , Animals , Callithrix , Female , Male , Nerve Fibers/metabolism , Neurons/cytology , Parvalbumins/metabolism
3.
J Comp Neurol ; 528(8): 1307-1320, 2020 06.
Article in English | MEDLINE | ID: mdl-31765000

ABSTRACT

The entorhinal cortex (EC) is associated with impaired cognitive function such as in the case of Alzheimer's disease, Parkinson's disease and Huntington's disease. The present study provides a detailed analysis of the cytoarchitectural and myeloarchitectural organization of the EC in the common marmoset Callithrix jacchus. Data were collected using Nissl and fiber stained preparations, supplemented with acetylcholinesterase and parvalbumin immunohistochemistry. The EC layers and subfields in the marmoset seem to be architectonically similar to those that have been proposed in nonhuman primates and humans to date; however, slight differences could be revealed using the present techniques. Throughout its rostrocaudal length, the entorhinal cortex presents a clear six-layered pattern. The entorhinal cortex is divided into six fields, named mainly in accordance to their rostrocaudal and mediolateral positions. At rostral levels, the neurons tend to be organized in patches that are surrounded by large, thick, radially oriented bundles of fibers, and the deep layers are poorly developed. At caudal levels, the divisions are more laminated in appearance. AChE staining at the borders of adjacent fields are consistent with the changes in layering revealed in Nissl-stained sections, of which the lateral regions of the EC display denser AChE staining than that of the medial banks. PV immunoreactivity was found in the labeled somata, dendrites, and axons in all layers and subdivisions. Additionally, we distinguished three subtypes of PV-immunoreactive neurons: multipolar, bipolar and spherical-shaped neurons, based on the shape of the somata and the disposition of the dendrites.


Subject(s)
Entorhinal Cortex/chemistry , Entorhinal Cortex/cytology , Neurons/chemistry , Animals , Callithrix , Entorhinal Cortex/anatomy & histology , Female , Male , Staining and Labeling/methods
4.
Physiol Behav ; 152(Pt A): 272-9, 2015 Dec 01.
Article in English | MEDLINE | ID: mdl-26471840

ABSTRACT

Studies from the last two decades have pointed to multiple mechanisms of fear. For responding to predators, there is a group of highly interconnected hypothalamic nuclei formed by the anterior hypothalamic nucleus, the ventromedial hypothalamic nucleus and the dorsal premammillary nucleus­the predator-responsive hypothalamic circuit. This circuit expresses Fos in response to predator presence or its odor. Lesion of any component of this system blocks or reduces the expression of fear and consequently defensive behavior when faced with a predator or its cue. However, most of the knowledge about that circuit has been obtained using the rat as a model of prey and the cat as a source of predator cues. In the present study, we exposed mice to strong cat or snake odors, two known mice predators, and then we used the rat exposure test (RET) to study their behavior when confronted with the same predator's odor. Our data point to a differential response of mice exposed to these odors. When Swiss mice were exposed to the cat odor, they show defensive behavior and the predator-responsive hypothalamic circuit expressed Fos. The opposite was seen when they faced snake's odor. The acute odor exposure was not sufficient to activate the mouse predator-responsive hypothalamic circuit and the mice acted like they were not in a stressful situation, showing almost no sign of fear or defensive posture. This leads us to the conclusion that not all the predator cues are sufficient to activate the predator-responsive hypothalamic circuit of mice and that their response depends on the danger that these predators represent in the natural history of the prey.


Subject(s)
Brain/physiology , Odorants , Olfactory Perception/physiology , Predatory Behavior , Animals , Boidae , Cats , Immunohistochemistry , Male , Mice , Motor Activity/physiology , Neural Pathways/physiology , Proto-Oncogene Proteins c-fos/metabolism , Random Allocation
5.
Neurosci Lett ; 443(2): 99-103, 2008 Oct 03.
Article in English | MEDLINE | ID: mdl-18682276

ABSTRACT

Traditional retinal projections target three functionally complementary systems in the brain of mammals: the primary visual system, the visuomotor integration systems and the circadian timing system. In recent years, studies in several animals have been conducted to investigate the retinal projections to these three systems, despite some evidence of additional targets. The aim of this study was to disclose a previously unknown connection between the retina and the parabrachial complex of the common marmoset, by means of the intraocular injection of cholera toxin subunit b. A few labeled retinal fibers/terminals that are detected in the medial parabrachial portion of the marmoset brain show clear varicosities, suggesting terminal fields. Although the possible role of these projections remains unknown, they may provide a modulation of the cholinergic parabrachial neurons which project to the thalamic dorsal lateral geniculate nucleus.


Subject(s)
Callithrix/anatomy & histology , Pons/cytology , Retina/cytology , Visual Pathways/cytology , Animals , Immunohistochemistry , Male
SELECTION OF CITATIONS
SEARCH DETAIL
...