Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
BMC Plant Biol ; 24(1): 471, 2024 May 29.
Article in English | MEDLINE | ID: mdl-38811870

ABSTRACT

BACKGROUND: Nutritional disorders of phosphorus (P), due to deficiency or toxicity, reduce the development of Eucalyptus spp. seedlings. Phosphorus deficiency often results in stunted growth and reduced vigor, while phosphorus toxicity can lead to nutrient imbalances and decreased physiological function. These sensitivities highlight the need for precise management of P levels in cultivation practices. The use of the beneficial element silicon (Si) has shown promising results under nutritional stress; nevertheless, comprehensive studies on its effects on Eucalyptus spp. seedlings are still emerging. To further elucidate the role of Si under varying P conditions, an experiment was conducted with clonal seedlings of a hybrid Eucalyptus spp. (Eucalyptus grandis × Eucalyptus urophylla, A207) in a soilless cultivation system. Seedlings were propagated using the minicutting method in vermiculite-filled tubes, followed by treatment with a nutrient solution at three P concentrations: a deficient dose (0.1 mM), an adequate dose (1.0 mM) and an excessive dose (10 mM), with and without the addition of Si (2mM). This study assessed P and Si concentration, nutritional efficiency, oxidative metabolism, photosynthetic parameters, and dry matter production. RESULTS: Si supply increased phenolic compounds production and reduced electrolyte leakage in seedlings provided with 0.1 mM of P. On the other hand, Si favored quantum efficiency of photosystem II as well as chlorophyll a content in seedlings supplemented with 10 mM of P. In general, Si attenuates P nutritional disorder by reducing the oxidative stress, favoring the non-enzymatic antioxidant system and photosynthetic parameters in seedlings of Eucalyptus grandis × Eucalyptus urophylla. CONCLUSION: The results of this study indicate that Eucalyptus grandis × Eucalyptus urophylla seedlings are sensitive to P deficiency and toxicity and Si has shown a beneficial effect, attenuating P nutritional disorder by reducing the oxidative stress, favoring the non-enzymatic antioxidant system and photosynthetic parameters.


Subject(s)
Eucalyptus , Phosphorus , Photosynthesis , Seedlings , Silicon , Eucalyptus/drug effects , Eucalyptus/physiology , Seedlings/physiology , Seedlings/drug effects , Seedlings/growth & development , Silicon/pharmacology , Phosphorus/metabolism , Phosphorus/deficiency , Photosynthesis/drug effects , Antioxidants/metabolism , Chlorophyll/metabolism , Oxidative Stress/drug effects
2.
BMC Plant Biol ; 23(1): 520, 2023 Oct 27.
Article in English | MEDLINE | ID: mdl-37884892

ABSTRACT

Studies of boron (B) and silicon (Si) synergy in cotton crops have shown promising results; however, the focus was on the foliar application of B and Si. Nonetheless, B is an element with little mobility in the plant and its best form of application is in the soil. Thus, the objective of this study was to evaluate the synergistic effect of soil applied B and foliar applied sSi on fiber quality and crop yield of cotton. For this purpose, a field experiment was carried out using cotton cultivar FM 985 GLTP. The soil's B in the experimental site is classified as low for cotton cultivation. The experiment was conducted in a randomized complete-block design, in a 3 × 2 factorial scheme, with three doses of B: 0.0 kg ha-1 (deficiency), 2.0 kg ha-1 (recommended dose), and 4.0 kg ha-1 (high dose) in the absence and presence (920 g L-1) of Si, with four replications. One week after the 4th application of Si, B and Si leaf content was determined. At boll opening, crop yield was estimated, and fiber quality analysis was realized. Boron deficiency reduced cotton yield, in 11 and 9%, compared to the application of 2 and 4 kg ha-1 of B, respectively. The presence of Si, however, increased plant yield in 5% in the treatments with 0 and 2 kg ha-1 of B, respectively. Cotton fiber length and elongation were not influenced by the B doses and Si presence. Fiber breaking strength was increased in 5% by the presence of Si and was not influenced by B deficiency. Micronaire was 8% smaller in the treatment with 0 kg ha-1 of B and 6% smaller in the absence of Si. Short fiber index was 4% greater in the plants of the treatment with 0 kg ha-1 of B. The results of this study reports that the complementation with Si via foliar application increases fiber quality by enhance breaking strength and micronaire. In conclusion, the interaction between soil-applied B and foliar-applied Si is beneficial for cotton cultivation, resulting in high cotton yield with better fiber quality.


Subject(s)
Cotton Fiber , Soil , Boron , Silicon/pharmacology , Plant Leaves , Gossypium
3.
Sci Rep ; 13(1): 16929, 2023 10 07.
Article in English | MEDLINE | ID: mdl-37805565

ABSTRACT

Potassium (K) deficiency in maize plants damages the nutritional functions of K. However, few studies have investigated the influence of K on C:N:P stoichiometry, the nutritional efficiency of these nutrients, and whether the mitigating effect of Si in plants under stress could act on these nutritional mechanisms involved with C, N, and P to mitigate K deficiency. Therefore, this study aimed to evaluate the impact of K deficiency in the absence and presence of Si on N and P uptake, C:N:P stoichiometric homeostasis, nutritional efficiency, photosynthetic rate, and dry matter production of maize plants. The experiment was conducted under controlled conditions using a 2 × 2 factorial scheme comprising two K concentrations: potassium deficiency (7.82 mg L-1) and potassium sufficiency (234.59 mg L-1). These concentrations were combined with the absence (0.0 mg L-1) and presence of Si (56.17 mg L-1), arranged in randomized blocks with five replicates. Potassium deficiency decreased stoichiometric ratios (C:N and C:P) and the plant's C, N, and P accumulation. Furthermore, it decreased the use efficiency of these nutrients, net photosynthesis, and biomass of maize plants. The results showed that Si supply stood out in K-deficient maize plants by increasing the C, N, and P accumulation. Moreover, it decreased stoichiometric ratios (C:N, C:P, N:P, C:Si, N:Si, and P:Si) and increased the efficiencies of uptake, translocation, and use of nutrients, net photosynthesis, and dry matter production of maize plants. Therefore, the low nutritional efficiency of C, N, and P caused by K deficiency in maize plants can be alleviated with the supply of 56.17 mg L-1 of Si in the nutrient solution. It changes C:N:P stoichiometry and favors the use efficiency of these nutrients, which enhances the photosynthesis and sustainability of maize.


Subject(s)
Hypokalemia , Potassium Deficiency , Silicon/pharmacology , Zea mays , Potassium
4.
Sci Rep ; 12(1): 16082, 2022 09 27.
Article in English | MEDLINE | ID: mdl-36167895

ABSTRACT

Silicon (Si) may be involved in the modification of C:N:P stoichiometry and in physiological processes, increasing sorghum growth and grain production. The objective was to evaluate the effect of Si supply on C:N:P:Si stoichiometry, physiological response, growth, and grain production of sorghum. The experiment was carried out in pots with four concentrations of Si: 0; 1.2; 2.4; and 3.6 mmol L-1 in a completely randomized design, with six replicates. Physiological attributes and dark green color index were measured and grain and biomass production were determined. Posteriorly, the plant material was ground to determine silicon (Si), carbon (C), nitrogen (N), and phosphorus (P) contents in order to analyze C:N:P:Si stoichiometry. C:Si and C:N ratios decreased at all Si concentrations applied (1.2, 2.4, and 3.6 mmol L-1) and in all plant parts studied, being lower at 3.6 mmol L-1. The lowest C:P ratios of leaves and roots were observed at 3.6 mmol L-1 Si and the lowest C:P ratio of stems was observed at 1.2 mmol L-1 Si. Si concentrations were not significant for the N:P ratio of leaves. The highest N:P ratio of stems was observed at 3.6 mmol L-1, while the lowest N:P ratio of roots was observed at 2.4 and 3.6 mmol L-1. Regardless of photosynthetic parameters, the application of 1.2 mmol L-1 Si enhanced photosynthetic rate. The application of 2.4 and 3.6 mmol L-1 enhanced stomatal conductance and dark green color index. The mass of 1000 grains was not influenced by Si applications, while Si applications at all concentrations studied (1.2, 2.4, and 3.6 mmol L-1) enhanced shoot and total dry matter, not affecting root dry matter and grain production. In conclusion, Si supply modifies C:N:P:Si stoichiometry and increases physiologic parameters, growth, development, and grain production in sorghum.


Subject(s)
Silicon , Sorghum , Carbon/pharmacology , Edible Grain , Nitrogen/pharmacology , Phosphorus/pharmacology , Plant Leaves , Silicon/pharmacology
5.
Pest Manag Sci ; 78(12): 5432-5436, 2022 Dec.
Article in English | MEDLINE | ID: mdl-36057848

ABSTRACT

BACKGROUND: Boron (B) and silicon (Si) are fundamental for brassica nutrition, and in some cases, they have potential as an insecticide. Plutella xylostella (L.) (Lepidoptera: Plutellidae), one of the most economically important agricultural pests, is difficult to control due to the resistance to insecticides and the absence of alternative control methods. RESULTS: Cauliflower leaves sprayed with Si and B showed a higher concentration of the beneficial element and micronutrient, respectively. When evaluating the firmness of the cauliflower leaves, it was found that the plants with leaf sprayings of Si and B did not differ statistically from each other. However, they showed an increase in firmness, in relation to the plants of the control treatment. Leaf spraying of Si and B on cauliflower did not influence the number of eggs/female. The attractiveness index showed that both Si and B applications stimulated the presence of second instar larvae, being more stimulating in relation to the control treatment. However, the use of Si and B in isolation showed a positive result, since it caused high mortality in diamondback moth larvae compared to the control treatment. CONCLUSION: The application of both foliar fertilizers positively affects the attractiveness index of the larvae, being attractive; however, both Si and B caused high mortality (~80%). The results showed that Si and B have the potential to control P. xylostella and serve as a basis for alternative pest management in brassica crops. © 2022 Society of Chemical Industry.


Subject(s)
Brassica , Insecticides , Moths , Animals , Silicon , Boron , Larva
6.
Front Plant Sci ; 13: 949909, 2022.
Article in English | MEDLINE | ID: mdl-35968098

ABSTRACT

Studies with silicon (Si) in sugarcane indicate a greater response in productivity in plants under stress, and the underlying mechanisms of Si in the crop are poorly reported. In this context, the benefits of Si in the crop's stem production are expected to occur at the C:N:P stoichiometry level in plant tissues, benefiting plants with and without stress. However, the extension of this response may vary in different soils. Thus, this research aimed to evaluate if fertigation with Si modifies the C:N:P stoichiometry and if it can increase sugarcane's nutritional efficiency and vegetative and productive parameters. Therefore, three experiments were installed using pre-sprouted seedlings to cultivate sugarcane in tropical soils belonging to the Quartzarenic Neosol, Eutrophic Red Latosol, and Dystrophic Red Latosol classes. The treatments comprised a 2 × 2 factorial scheme in each soil. The first factor was composed without water restriction (water retention = 70%; AWD) and with water restriction (water retention = 35%; PWD). The second factor presented Si concentrations (0 mM and 1.8 mM) arranged in randomized blocks with five replications. Fertigation with Si increases the Si and P concentration, the C and N efficiency, the C:N ratio, and the dry mass production. However, it decreases the C and N concentration and the C:P, C:Si, and N:P ratios in sugarcane leaves and stems regardless of the water regime adopted in the three tropical soils. Cluster and principal components analysis indicated that the intensity of the beneficial effects of Si fertigation on sugarcane plants varies depending on the cultivation soil and water conditions. We found that Si can be used in sugarcane with and without water stress. It changes the C:N:P homeostasis enough to improve the nutritional efficiency of C, P, N, and, consequently, the dry mass accumulation on the stems, with variation in the different cultivated soils.

7.
Sci Rep ; 11(1): 19690, 2021 10 04.
Article in English | MEDLINE | ID: mdl-34608202

ABSTRACT

Potassium (K) deficiency affects physiological performance and decreases vegetative growth in common bean plants. Although silicon (Si) supplied via nutrient solution or foliar application may alleviate nutritional stress, research on the bean crop is incipient. Thus, two experiments were carried out: initially, a test was performed to determine the best source and foliar concentration of silicon. Subsequently, the chosen Si source was supplied in nutrient solution via roots or foliar application to verify whether Si supply forms are efficient in alleviating the effects of K deficiency. For these purposes, a completely randomized 2 × 3 factorial design was used, with two levels of K: deficient (0.2 mmol L-1 of K) and sufficient (6 mmol L-1 of K); and Si: in nutrient solution via roots (2 mmol L-1 of Si) or foliar application (5.4 mmol L-1 of Si) and control (0 mmol L-1 of Si). Our findings revealed that Si supplied via foliar spraying using the source of sodium silicate and stabilized potassium at a concentration of 5.4 mmol L-1 was agronomically viable for the cultivation of bean plant. K deficiency, when not supplied with silicon, compromised plant growth. Moreover, root-and-foliar-applied Si attenuated the effects of K deficiency as it increased chlorophylls and carotenoids content, photosynthetic activity, water use efficiency and vegetative growth. For the first time, the role of Si to mitigate K deficiency in the bean crop was evidenced, with a view to further research on plants that do not accumulate this beneficial element.


Subject(s)
Phaseolus/metabolism , Plant Roots/metabolism , Potassium Deficiency/metabolism , Silicon/administration & dosage , Phenotype , Plant Development , Plant Leaves , Plant Physiological Phenomena , Stress, Physiological
8.
Sci Rep ; 11(1): 14665, 2021 07 19.
Article in English | MEDLINE | ID: mdl-34282251

ABSTRACT

Nutritional deficiency is common in several regions of quinoa cultivation. Silicon (Si) can attenuate the stress caused by nutritional deficiency, but studies on the effects of Si supply on quinoa plants are still scarce. Given this scenario, our objective was to evaluate the symptoms in terms of tissue, physiological and nutritional effects of quinoa plants submitted to nitrogen (N), phosphorus (P), potassium (K), calcium (Ca), and magnesium (Mg) deficiencies under Si presence. The experiment consisted of a factorial scheme 6 × 2, using a complete solution (CS), -N, -P, -K, -Ca, -Mg combined with absence and presence of Si (1.5 mmol L-1). Symptomatic, physiological, nutritional and evaluation vegetative were performed in quinoa crop. The deficiencies of N, P, K, Ca and Mg in quinoa cultivation caused visual symptoms characteristic of the deficiency caused by respective nutrients, hence decreasing the plant dry mass. However, Si supply attenuated the deficiency effects by preserving the photosynthetic apparatus, increasing the chlorophyll production, increasing the membrane integrity, and decreasing the electrolyte leakage. Thus, the Si supply attenuated the visual effects provided by deficiency of all nutrients, but stood out for N and Ca, because it reflected in a higher dry mass production. This occurred because, the Si promoted higher synthesis and protection of chlorophylls, and lower electrolyte leakage under Ca restriction, as well as decreased electrolyte leakage under N restriction.


Subject(s)
Chenopodium quinoa/drug effects , Silicon/pharmacology , Stress, Physiological/drug effects , Agriculture , Chenopodium quinoa/growth & development , Chenopodium quinoa/metabolism , Nitrogen/metabolism , Nutrients , Phosphorus/metabolism , Photosynthesis/drug effects , Seeds/drug effects , Seeds/growth & development , Seeds/metabolism
9.
PLoS One ; 16(4): e0250436, 2021.
Article in English | MEDLINE | ID: mdl-33886651

ABSTRACT

Nitrogen deficiency and toxicity, primarily in its ammonium form (NH4+), can suppress plant growth and development. The use of silicon (Si) or salicylic acid (SA) may be an alternative to minimize the harmful effects of nutrient imbalances caused by NH4+, thereby improving the photosynthetic efficiency of plants. The aim of the present study was to assess the action of fertigation-applied Si and SA foliar spraying in mitigating NH4+ toxicity and deficiency in eucalyptus clonal seedlings. Two experiments were performed with eucalyptus clonal seedlings (Eucalyptus urophylla x Eucalyptus grandis), in a greenhouse. Both were carried out using a 4x2 factorial design and four concentrations of NH4+ (5, 15, 30 and 60 mmol L-1), in the absence and presence of Si (2 mmol L-1), in experiment I; or with and without SA foliar application (10-2 mmol L-1), in experiment II, with six repetitions. Nitrogen content rose as a result of increasing N-NH4+ concentration in the nutrient solution, and Si supplied via the nutrient solution was efficient in increasing the Si content in eucalyptus seedlings. The rise in N-NH4+ concentration favored the maintenance of the photosynthetic apparatus, but high N-NH4+ concentration increased energy loss through fluorescence and decreased the efficiency of photosystem II. The addition of Si to the nutrient solution proved to be beneficial to the photosynthetic apparatus by decreasing F0 at 15 and 30 mmol L-1 of NH4+; and Fm at all NH4+ concentrations studied. In addition, the beneficial element also increases Fv/Fm at all NH4+ concentrations studied. SA foliar application was also efficient in reducing photosynthetic energy losses by decreasing F0 and Fm at all NH4+ concentrations studied. However, SA only increased the Fv/Fm at the high concentrations studied (30 and 60 mmol L-1 of NH4+). Nitrogen disorder by deficiency or N-NH4+ toxicity reduced shoot dry mass production. The addition of Si to the nutrient solution and SA foliar application increased shoot dry mass production at all N-NH4+ concentrations studied, and benefitted the photosynthetic apparatus by decreasing fluorescence and improving the quantum efficiency of photosystem II as well as dry mass production.


Subject(s)
Ammonium Compounds/metabolism , Eucalyptus/metabolism , Nitrogen/deficiency , Plant Diseases , Salicylic Acid/pharmacology , Seedlings/metabolism , Signal Transduction/drug effects , Silicon/pharmacology , Eucalyptus/growth & development , Photosynthesis/drug effects , Photosystem II Protein Complex/metabolism , Plant Leaves/growth & development , Plant Leaves/metabolism , Plant Roots/growth & development , Plant Roots/metabolism , Seedlings/growth & development
10.
Sci Rep ; 10(1): 12492, 2020 07 27.
Article in English | MEDLINE | ID: mdl-32719349

ABSTRACT

Silicon (Si) application has improved yield and stress tolerance in sugarcane crops. In this respect, C:N:P stoichiometry makes it possible to identify flows and interaction between elements in plants and their relationship with growth. However, few studies have investigated the influence of Si on physiological variables and C:N:P stoichiometry in sugarcane. As such, this study aimed to assess the effect of increasing Si concentrations on the growth and stoichiometric composition of sugarcane plants in the early growth stage. The experiment was conducted in pots, using four Si concentrations (0, 0.8, 1.6 and 3.2 mM). Biomass production, the concentration and accumulation of C, N, P and Si as well as the relationship between them were assessed. Silicon application increased biomass production, the rate of photosynthesis, instantaneous carboxylation efficiency and C, N, P and Si accumulation, in addition to altering stoichiometric ratios (C:N, C:P, N:P and C:Si) in different parts of the plants. The decline in C concentration associated with greater N and P absorption indicates that Si favoured physiological processes, which is reflected in biomass production. Our results demonstrate that Si supply improved carbon use efficiency, directly influencing sugarcane yield as well as C and nutrient cycling.


Subject(s)
Biomass , Carbon/metabolism , Nitrogen/metabolism , Phosphorus/metabolism , Photosynthesis/drug effects , Plant Development/drug effects , Saccharum/metabolism , Silicon/pharmacology , Carotenoids/metabolism , Chlorophyll/metabolism , Humidity , Plant Stomata/drug effects , Plant Stomata/metabolism , Saccharum/drug effects , Saccharum/growth & development , Temperature
SELECTION OF CITATIONS
SEARCH DETAIL
...