Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Main subject
Language
Publication year range
1.
Pest Manag Sci ; 76(7): 2355-2359, 2020 Jul.
Article in English | MEDLINE | ID: mdl-32003142

ABSTRACT

BACKGROUND: Soybean seed treatment with fungicides is a well-established disease management strategy. However, the movement of these fungicides within seedlings is not always well characterized. Thus, the objectives of this study were to determine the pattern of translocation of three fungicides with different modes of action applied as a seed treatment, and the effect of soil type on translocation. RESULTS: Most of the absorbed radioactivity was concentrated in the cotyledons and the maximum sum of the rates of absorption by roots, stems, and leaves of the plants was 15%. In most cases, absorption by roots, stems, and leaves were lower than 5% for 14 C-pyraclostrobin and 14 C-metalaxyl, and 1.6% for 14 C-carbendazim. Fungicides absorbed by the roots and the whole seedlings were higher when plants were grown in soil with lower organic matter content. Fungicides in the cotyledons are unlikely to be redistributed and are lost when cotyledons fall off the plants. CONCLUSION: Cotyledons are the part of the plant where fungicides are most absorbed, regardless of the fungicide. Soil type affects the absorption of fungicides, and in this study it was most likely caused by soil organic matter. These data improve knowledge of the movement of seed treatment fungicides in soybean seedlings and may help the development of seed treatment chemistry to manage seed and soilborne pathogens.


Subject(s)
Glycine max , Fungicides, Industrial , Plant Leaves , Plant Roots , Seeds
2.
Braz J Microbiol ; 40(1): 73-8, 2009 Jan.
Article in English | MEDLINE | ID: mdl-24031320

ABSTRACT

Biological control consists of using one organism to attack another that may cause economic damage to crops. Integrated Pest Management (IPM) is a very common strategy. The white mold produced by Sclerotinia sclerotiorum (Lib.) causes considerable damage to bean crops. This fungus is a soil inhabitant, the symptoms of which are characterized by water-soaked lesions covered by a white cottony fungal growth on the soil surface and/or the host plant. Possible biological control agents taken from plants are being investigated as phytopathogen inhibitors. These are endophytic microorganisms that inhabit the intercellular spaces of vegetal tissues and are often responsible for antimicrobial production. The objective of the present study was to select endophytic fungi isolated from comfrey (Symphytum officinale L.) leaves with in vitro antagonist potential against the phytopathogenic fungus S. sclerotiorum. Twelve isolates of endophytic fungi and a pathogenic strain of S. sclerotiorum were used in the challenge method. With the aid of this method, four endophytes with the best antagonistic activity against S. sclerotiorum were selected. Pathogen growth inhibition zones were considered indicative of antibiosis. The percentages of pathogenic mycelia growth were measured both with and without the antagonist, resulting in growth reductions of 46.7% to 50.0% for S. sclerotiorum. These analyses were performed by evaluating the endophytic/pathogenic mycelia growth in mm/day over an eight-day period of antagonistic tests.

SELECTION OF CITATIONS
SEARCH DETAIL
...