Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
3 Biotech ; 14(4): 102, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38464613

ABSTRACT

A drug that is widely used in the treatment of psychiatric disorder is lithium (Li) salts. The people who make therapeutic use of this drug develop a series of side effects. Through metataxonomic data, this study assessed the impacts of lithium, as Li carbonate or Li-enriched mushrooms, on the microbial composition of the ileum, colon, and feces of piglets. Employing Bray-Curtis metric, no differences were observed among the treatments evaluated. Nevertheless, the alpha diversity indices showed differences in the Simpson, Shannon, and Chao-1 indices in the colon and Chao-1 in the feces in the diets with Li compared with the diets without Li. The taxa with the highest relative abundance varied among the ileum, colon, and feces, with a predominance of the phyla Firmicutes, Bacteroidota, and Proteobacteria in diets with Li. Many groups of microorganisms that are important for the health of the host (e.g., Lactobacillus, Ruminococcaceae, Enterorhabdus, Muribaculaceae, and Coprococcus) had their relative abundance increased in animals that received diets with the recommended dose of lithium. Furthermore, there was an increase in the abundance of Prevotellaceae and Bacteroidales (in the diet with Li-enriched mushroom) and Clostridia, Ruminococcus, Burkholderia, and Bacteroidales (diets with Li carbonate) at the recommended dosages. This is the first study to show the effects of Li carbonate and Li-enriched mushrooms on the intestinal microbiota of piglets. Thus, the effects of lithium on the body may be related to its ability to change the composition of the intestinal microbiota. Supplementary Information: The online version contains supplementary material available at 10.1007/s13205-024-03938-3.

2.
3 Biotech ; 13(12): 406, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37987024

ABSTRACT

Agro-industrial residue and textile effluents have caused environmental damage to soil and water bodies. The production of fungal enzymes using agro-industrial residues and the use of these enzymes in the degradation of textile dyes can be a viable alternative to reduce these environmental damages. Lentinula edodes is a white rot fungus with high nutritional value that produces edible mushrooms and enzymes of commercial interest. Thus, the objectives of this study were to produce, purify, and biochemically characterize the lignocellulolytic enzymes and lipases produced for L. edodes in Macaúba coconut and to evaluate their potential for the degradation of textile dyes. The L. edodes UFV 73 had maximum enzymatic activity at 37 days of incubation. After the purification steps, the laccase, manganese peroxidase (MnP), cellulase, and, xylanase yields were 489.01, 264.2, 105.02, and 9.5%. The optimum temperature of cellulase activity did not change from 4 to 60 °C. The MnP, laccase, and lipase had activity directly proportional to the increase in temperature, while the cellulase and xylanase activity did not change. The optimum pH varied among analyzed enzymes. All the enzymes analyzed are according to Michaelis-Menten kinetics. The lignocellulolytic enzymes were stable up to 8 h of incubation and lipase had a reduction of activity after one hour. The discoloration rate of indigo dye by partially purified enzymatic extract (PPPE) was 40%, which shows its potential for degradation of dyes from textile industries.

SELECTION OF CITATIONS
SEARCH DETAIL
...