Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Pharmaceutics ; 16(2)2024 Feb 08.
Article in English | MEDLINE | ID: mdl-38399306

ABSTRACT

Infectious and Parasitic Diseases (IPD) remain a challenge for medicine due to several interconnected reasons, such as antimicrobial resistance (AMR). American tegumentary leishmaniasis (ATL) is an overlooked IPD causing persistent skin ulcers that are challenging to heal, resulting in disfiguring scars. Moreover, it has the potential to extend from the skin to the mucous membranes of the nose, mouth, and throat in both humans and various animals. Given the limited effectiveness and AMR of current drugs, the exploration of new substances has emerged as a promising alternative for ATL treatment. Arrabidaea brachypoda (DC). Bureau is a native Brazilian plant rich in dimeric flavonoids, including Brachydin (BRA), which displays antimicrobial activity, but still little has been explored regarding the development of therapeutic formulations. In this work, we present the design of a low-cost liquid formulation based on the use of Pluronic F127 for encapsulation of high BRA concentration (LF-B500). The characterization techniques revealed that BRA-loaded F127 micelles are well-stabilized in an unusual worm-like form. The in vitro cytotoxicity assay demonstrated that LF-B500 was non-toxic to macrophages but efficient in the inactivation of forms of Leishmania amazonensis promastigotes with IC50 of 16.06 µg/mL. The results demonstrated that LF-B500 opened a new perspective on the use of liquid formulation-based natural products for ATL treatment.

3.
AAPS PharmSciTech ; 24(8): 212, 2023 Oct 17.
Article in English | MEDLINE | ID: mdl-37848719

ABSTRACT

Fridericia platyphylla (Cham.) L.G. Lohmann is a species native to the Brazilian cerrado, with promising bioactivity. The organic fraction of the roots is rich in unusual dimeric flavonoids, reported as potential candidates for cancer treatment. The exploration of these flavonoids is very important, considering their diverse biological activities and the need for innovative therapeutic options. This work aimed to develop and characterize a microemulsion loaded with a non-polar fraction (DCM). The constituents were chosen, and the pseudo-ternary diagram was constructed to determine the region of microemulsion formation. The microemulsions blank (ME), with 3% (ME3) and 5% (ME5) of fraction DCM, were characterized in terms of droplet size, zeta potential, and polydispersity index. Both MEs showed particle sizes <100 nm; only ME3 exhibited better values for polydispersity index and zeta potential and was therefore selected for further study. The organoleptic and physicochemical characteristics were evaluated, revealing limpidity and transparency typical of these microstructures, physiologically acceptable pH, refractive index of 1.42±0.01, and density of 1.017 g/cm3±0.01. The stability tests showed good stability profiles even after exposure to extreme thermal conditions, with minimal changes in pH and the content of the incorporated fraction. The in vitro release study demonstrated that ME3 enabled the controlled release of the fraction, with a cumulative amount released over 60% within 6 h. Furthermore, fraction DCM and ME3 exhibited no toxicity in Tenebrio molitor larvae. The developed microemulsion exhibited excellent properties, so this study represents the first successful attempt to develop a formulation that incorporates the dimeric flavonoid fraction.


Subject(s)
Flavonoids , Polymers , Brazil , Emulsions/chemistry
4.
Pharmaceutics ; 15(4)2023 Apr 14.
Article in English | MEDLINE | ID: mdl-37111728

ABSTRACT

Skin cancer (SC) is affecting an increasing number of people worldwide. Its lesions affect mainly the most exposed regions of the skin. SC is classified into to main categories: non-melanoma (basal cell carcinoma of the epidermis and squamous cell carcinoma) and melanoma (the abnormal proliferation of melanocytes, which is rarer, more hazardous, and more deadly). Prevention and early diagnosis are important actions, and surgery is often considered. After the removal of cancerous lesions, the local administration of medicine can guarantee anticancer therapeutic action, rapid healing and the recovery of tissue, ensuring the absence of recurrence. Magnetic gels (MGs) have attracted increased attention regarding their pharmaceutical and biomedical applications. They are magnetic nanoparticles (e.g., iron oxide nanoparticles) dispersed in a polymeric matrix, which constitute adaptive systems under a magnetic field. MGs can combine magnetic susceptibility, high elasticity, and softness, and are thus useful platforms for diagnostics, drug delivery, and also for hyperthermia. This manuscript reviews MGs as a technological strategy for the treatment of SC. An overview of SC and the treatment, types, and methods of preparing MGs are discussed. Moreover, the applications of MGs in SC and their future perspectives are considered. The combination of polymeric gels and magnetic nanoparticles continues to be investigated, and new products must hit the market. Clinical trials and new products are expected, due to the important advantages of MGs.

SELECTION OF CITATIONS
SEARCH DETAIL
...