Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Int J Pharm ; 636: 122853, 2023 Apr 05.
Article in English | MEDLINE | ID: mdl-36931537

ABSTRACT

The present work aimed to evaluate different Liquid Crystal Mesophases (LCM) as transdermal drug delivery systems (TDDS) for nifedipine (NFD), a lipophilic drug model. The formulations composed of water, Citrus sinensis essential oil (CSEO), PPG-5-CETETH-20, and Olive oil ester PEG-7 were obtained and characterized by polarized light microscopy (PLM), rheology, small-angle x-ray scattering (SAXS), Fourier transform infrared coupled with an attenuated total reflection accessory (FTIR-ATR) and in vitro assays: bioadhesion, drug release, skin permeation, and retention tests. As a result, changes in component proportions led to several transparent viscous systems with an anisotropic profile. PLM and SAXS proved the presence of lamellar (S1), hexagonal (S3), and lamellar + hexagonal (S2) LCM, and rheology showed a high viscoelasticity profile. LCMs were able to adhere to the skin, and S2 achieved higher adhesion strength. NFD (5 mg/mL) has not modified the organization of LCMs. Results also showed that S3 promoted higher permeation and retention and higher disorganization of stratum corneum lipids, which is the main permeation-enhancing mechanism. Thus, the formulations obtained can carry and improve drug delivery through the skin and are promising TDDS for lipophilic drug administration, such as NFD.


Subject(s)
Liquid Crystals , Pharmaceutical Preparations , Scattering, Small Angle , Liquid Crystals/chemistry , X-Ray Diffraction , Administration, Cutaneous , Skin
2.
Eur J Pharm Biopharm ; 179: 221-231, 2022 Oct.
Article in English | MEDLINE | ID: mdl-36122783

ABSTRACT

The objective of this study was to obtain optimized nanostructured lipid carriers (NLC) functionalized with chitosan containing chloroaluminum phthalocyanine (ClAlPc) as a photosensitizer. Initially, the optimization of the preparation method of the NLC was performed, where the influence of different surfactants such as PVA and Tween 80, as well as different solid lipids such as stearic acid and Glycerol Monostearate (GM) was evaluated. The formulation containing GM and PVA (NLC10) was considered promising. Following, by the adsorption method (NLC10q), the formulation was functionalized with chitosan and characterized. NLC10 and NLC10q presented sizes of 131.5 and 231.5 nm, and ZP of -24.30 and + 19.96 mV, respectively. The encapsulation efficiency of NLC10q was 96 %, higher than NLC10 (79 %). The formulations were able to promote significant cutaneous retention of ClAlPc, after 2 h and 4 h of the study, and showed to be non-toxic to fibroblasts (biocompatible). PDT in BF16-F10 melanoma resulted in reduced cell viability to 70 % and 50 % for NLC10 and NLCq, respectively. In view of the results obtained, NLC showed to be promising in the treatment of skin cancer through PDT. NLC10q showed higher encapsulation efficiency and stability than NLC10, but, contrary to what was expected, it presented lower photodynamic efficiency.


Subject(s)
Chitosan , Nanostructures , Photochemotherapy , Skin Neoplasms , Drug Carriers , Glycerol , Humans , Indoles , Organometallic Compounds , Particle Size , Photochemotherapy/methods , Photosensitizing Agents , Polysorbates , Skin Neoplasms/drug therapy , Surface-Active Agents
3.
Colloids Surf B Biointerfaces ; 214: 112474, 2022 Jun.
Article in English | MEDLINE | ID: mdl-35338963

ABSTRACT

Nifedipine is a potent anti-hypertensive, which is poorly orally bioavailable on account of first-pass metabolism, short half-life, and low water solubility. This study aimed to develop a microemulsified system with low surfactant concentration and to evaluate the influence of microemulsion (ME) phase behavior on skin permeation of nifedipine, as drug model. Thereafter, MEs were obtained using PPG-5-CETETH-20, oleic acid, and phosphate buffer at pH 5.0. The selected MEs were isotropic, with droplet diameters less than 10 nm, polydispersity index < 0.25, and pH between 5.0 and 5.2. MEs presented low viscosity and Newtonian behavior. SAXS results confirmed bicontinuous and oil-in-water (o/w) MEs formation. The presence of the drug promoted only very slight modifications in the ME structure. The MEs presented ability to deliver nifedipine via the transdermal route when in comparison with the control. Nevertheless, the skin permeated and retained amounts from the o/w and bicontinuous formulations did not differ significantly. The ATR-FTIR demonstrated that both formulations promoted fluidization and disorganization of lipids and increased the drug diffusion and partition coefficients in the skin. In conclusion, PPG-5-CETETH-20 MEs obtained proved to be effective skin permeation enhancers, acting by rising the coefficients of partition and diffusion of the nifedipine in the skin.


Subject(s)
Nifedipine , Skin , Administration, Cutaneous , Emulsions/chemistry , Nifedipine/metabolism , Scattering, Small Angle , Skin/metabolism , Surface-Active Agents/chemistry , Water/chemistry , X-Ray Diffraction
4.
Pharmaceutics ; 12(7)2020 Jul 11.
Article in English | MEDLINE | ID: mdl-32664574

ABSTRACT

The formation of mucosal ulcers is an end result of epithelial damage, and it occurs due to some specific causes, such as trauma, aphthous stomatitis, lichen planus and lichenoid reactions, cytotoxic effects of chemotherapy and radiation, and drug-induced hypersensitivity reactions and malignant settings. This study focused on films for target drug delivery with respect to the treatment of the diseases of the oral mucosa, specifically mucositis. The results of a single clinical study as a pre-experimental design was performed and followed up to the outcome until 30 days. The polymeric film was prepared in a mucoadhesive bilayer structure: the basal layer with lidocaine HCl had a faster release than the apical layer with benzydamine HCl and N-acetyl-cysteine. Fourier Transform Infrared Spectroscopy (FTIR), Differential Scanning Calorimetry (DSC), and SEM characterized the physical-chemical and morphological properties. The cell viability and cytotoxicity were evaluated in cell line MCF7. The transport mechanism of the solvent (swelling) and the drugs in the basal or apical layer (drug release) was explained with mathematical models. To evaluate the effect of movement inside the mouth, the folding endurance was determined. The mucoadhesive bilayer film is biologically safe and stimulates cellular proliferation. A single study in vivo demonstrated the therapeutic effect of the mucoadhesive bilayer film in buccal mucositis.

5.
Colloids Surf B Biointerfaces ; 188: 110739, 2020 Apr.
Article in English | MEDLINE | ID: mdl-31901623

ABSTRACT

This study aims to develop in situ microemulsion-gel (ME-Gel) obtained from hydroxypropyl methylcellulose (HPMC) films for transdermal administration of Zidovudine (AZT). Firstly, HPMC films containing propylene glycol (PG) and eucalyptus oil (EO) were obtained and characterized. Later, a pseudo-ternary phase diagram composed of water, EO, tween 80 and PG was obtained and one microemulsion (ME) with a similar proportion of the film components was obtained. ME was transformed in ME-Gel by the incorporation of HPMC. Finally, HPMC films were hydrated with Tween 80 solution to yield in situ ME-Gel and its effect on AZT skin permeation was compared with HPMC film hydrated with water (F5hyd). The results showed that the ME and ME-Gel presented a droplet size of 16.79 and 122.13 µm, respectively, polydispersity index (PDI) < 0.39 and pH between 5.10 and 5.40. The incorporation of HPMC resulted in viscosity about 2 times higher than the use of ME. The presence of AZT did not alter the formulation properties. The in situ ME-Gel promoted a two-fold increase in the permeated amount of AZT compared to F5hyd. The results suggest that it was possible to obtain an ME-Gel in situ from HPMC films and that its effect on transdermal permeation of AZT was significant.


Subject(s)
Methylcellulose/chemistry , Prodrugs/chemistry , Zidovudine/chemistry , Administration, Cutaneous , Animals , Emulsions/administration & dosage , Emulsions/chemistry , Emulsions/metabolism , Eucalyptus Oil/administration & dosage , Eucalyptus Oil/chemistry , Eucalyptus Oil/metabolism , Gels/administration & dosage , Gels/chemistry , Gels/metabolism , Male , Methylcellulose/administration & dosage , Methylcellulose/metabolism , Particle Size , Prodrugs/administration & dosage , Prodrugs/metabolism , Propylene Glycol/administration & dosage , Propylene Glycol/chemistry , Propylene Glycol/metabolism , Rats , Rats, Wistar , Skin/chemistry , Skin/metabolism , Skin Absorption , Surface Properties , Zidovudine/administration & dosage , Zidovudine/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...