Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 52
Filter
Add more filters










Publication year range
1.
Genetics ; 225(1)2023 08 31.
Article in English | MEDLINE | ID: mdl-37440469

ABSTRACT

In budding yeast, the transcriptional repressor Opi1 regulates phospholipid biosynthesis by repressing expression of genes containing inositol-sensitive upstream activation sequences. Upon genotoxic stress, cells activate the DNA damage response to coordinate a complex network of signaling pathways aimed at preserving genomic integrity. Here, we reveal that Opi1 is important to modulate transcription in response to genotoxic stress. We find that cells lacking Opi1 exhibit hypersensitivity to genotoxins, along with a delayed G1-to-S-phase transition and decreased gamma-H2A levels. Transcriptome analysis using RNA sequencing reveals that Opi1 plays a central role in modulating essential biological processes during methyl methanesulfonate (MMS)-associated stress, including repression of phospholipid biosynthesis and transduction of mating signaling. Moreover, Opi1 induces sulfate assimilation and amino acid metabolic processes, such as arginine and histidine biosynthesis and glycine catabolism. Furthermore, we observe increased mitochondrial DNA instability in opi1Δ cells upon MMS treatment. Notably, we show that constitutive activation of the transcription factor Ino2-Ino4 is responsible for genotoxin sensitivity in Opi1-deficient cells, and the production of inositol pyrophosphates by Kcs1 counteracts Opi1 function specifically during MMS-induced stress. Overall, our findings highlight Opi1 as a critical sensor of genotoxic stress in budding yeast, orchestrating gene expression to facilitate appropriate stress responses.


Subject(s)
Saccharomyces cerevisiae Proteins , Saccharomycetales , Basic Helix-Loop-Helix Transcription Factors/metabolism , DNA Damage , Gene Expression Regulation, Fungal , Inositol/metabolism , Inositol/pharmacology , Phospholipids/metabolism , Repressor Proteins/metabolism , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae/metabolism , Saccharomyces cerevisiae Proteins/genetics , Saccharomyces cerevisiae Proteins/metabolism , Saccharomycetales/metabolism , Transcription Factors/genetics
2.
Toxics ; 9(12)2021 Dec 09.
Article in English | MEDLINE | ID: mdl-34941782

ABSTRACT

Manganese (Mn) is an important element; yet acute and/or chronic exposure to this metal has been linked to neurotoxicity and neurodegenerative illnesses such as Parkinson's disease and others via an unknown mechanism. To better understand it, we exposed a human neuroblastoma cell model (SH-SY5Y) to two Mn chemical species, MnCl2 and Citrate of Mn(II) (0-2000 µM), followed by a cell viability assay, transcriptomics, and bioinformatics. Even though these cells have been chemically and genetically modified, which may limit the significance of our findings, we discovered that by using RA-differentiated cells instead of undifferentiated SH-SY5Y cell line, both chemical species induce a similar toxicity, potentially governed by disruption of protein metabolism, with some differences. The MnCl2 altered amino acid metabolism, which affects RNA metabolism and protein synthesis. Citrate of Mn(II), however, inhibited the E3 ubiquitin ligases-target protein degradation pathway, which can lead to the buildup of damaged/unfolded proteins, consistent with histone modification. Finally, we discovered that Mn(II)-induced cytotoxicity in RA-SH-SY5Y cells shared 84 percent of the pathways involved in neurodegenerative diseases.

3.
FEBS Open Bio ; 11(3): 546-563, 2021 03.
Article in English | MEDLINE | ID: mdl-33547867

ABSTRACT

Little is known about Nima-related kinase (NEKs), a widely conserved family of kinases that have key roles in cell-cycle progression. Nevertheless, it is now clear that multiple NEK family members act in networks, not only to regulate specific events of mitosis, but also to regulate metabolic events independently of the cell cycle. NEK5 was shown to act in centrosome disjunction, caspase-3 regulation, myogenesis, and mitochondrial respiration. Here, we demonstrate that NEK5 interacts with LonP1, an AAA+ mitochondrial protease implicated in protein quality control and mtDNA remodeling, within the mitochondria and it might be involved in the LonP1-TFAM signaling module. Moreover, we demonstrate that NEK5 kinase activity is required for maintaining mitochondrial mass and functionality and mtDNA integrity after oxidative damage. Taken together, these results show a new role of NEK5 in the regulation of mitochondrial homeostasis and mtDNA maintenance, possibly due to its interaction with key mitochondrial proteins, such as LonP1.


Subject(s)
ATP-Dependent Proteases/metabolism , DNA, Mitochondrial/genetics , Mitochondria/metabolism , Mitochondrial Proteins/metabolism , NIMA-Related Kinases/metabolism , Cell Line , DNA Copy Number Variations , Gene Expression Regulation , HEK293 Cells , Humans , Mitochondria/genetics , NIMA-Related Kinases/genetics , Oxidative Stress , Protein Interaction Maps
4.
Enzymes ; 45: 257-287, 2019.
Article in English | MEDLINE | ID: mdl-31627879

ABSTRACT

The mitochondrial genome encodes proteins essential for the oxidative phosphorylation and, consequently, for proper mitochondrial function. Its localization and, possibly, structural organization contribute to higher DNA damage accumulation, when compared to the nuclear genome. In addition, the mitochondrial genome mutates at rates several times higher than the nuclear, although the causal relationship between these events are not clearly established. Maintaining mitochondrial DNA stability is critical for cellular function and organismal fitness, and several pathways contribute to that, including damage tolerance and bypass, degradation of damaged genomes and DNA repair. Despite initial evidence suggesting that mitochondria lack DNA repair activities, most DNA repair pathways have been at least partially characterized in mitochondria from several model organisms, including humans. In this chapter, we review what is currently known about how the main DNA repair pathways operate in mitochondria and contribute to mitochondrial DNA stability, with focus on the enzymology of mitochondrial DNA repair.


Subject(s)
DNA Damage , DNA Repair , DNA, Mitochondrial/metabolism , Mitochondria/genetics , Humans
5.
PLoS One ; 14(8): e0221362, 2019.
Article in English | MEDLINE | ID: mdl-31415677

ABSTRACT

Base excision repair (BER) defects and concomitant oxidative DNA damage accumulation play a role in the etiology and progression of late-onset Alzheimer's disease (LOAD). However, it is not known whether genetic variant(s) of specific BER genes contribute to reduced BER activity in LOAD patients and whether they are associated with risk, development and/or progression of LOAD. Therefore, we performed targeted next generation sequencing for three BER genes, uracil glycosylase (UNG), endonuclease VIII-like DNA glycosylase 1 (NEIL1) and polymerase ß (POLß) including promoter, exonic and intronic regions in peripheral blood samples and postmortem brain tissues (temporal cortex, TC and cerebellum, CE) from LOAD patients, high-pathology control and cognitively normal age-matched controls. In addition, the known LOAD risk factor, APOE was included in this study to test whether any BER gene variants associate with APOE variants, particularly APOE ε4. We show that UNG carry five significant variants (rs1610925, rs2268406, rs80001089, rs1018782 and rs1018783) in blood samples of Turkish LOAD patients compared to age-matched controls and one of them (UNG rs80001089) is also significant in TC from Brazilian LOAD patients (p<0.05). The significant variants present only in CE and TC from LOAD are UNG rs2569987 and POLß rs1012381950, respectively. There is also significant epistatic relationship (p = 0.0410) between UNG rs80001089 and NEIL1 rs7182283 in TC from LOAD subjects. Our results suggest that significant BER gene variants may be associated with the risk of LOAD in non-APOE ε4 carriers. On the other hand, there are no significant UNG, NEIL1 and POLß variants that could affect their protein level and function, suggesting that there may be other factors such as post-transcriptional or-translational modifications responsible for the reduced activities and protein levels of these genes in LOAD pathogenesis. Further studies with increased sample size are needed to confirm the relationship between BER variants and LOAD risk.


Subject(s)
Alzheimer Disease/genetics , Apolipoproteins E/metabolism , Brain , DNA Glycosylases/genetics , DNA Polymerase beta/genetics , DNA Repair , Polymorphism, Genetic , Uracil-DNA Glycosidase/genetics , Aged , Aged, 80 and over , Alzheimer Disease/metabolism , Alzheimer Disease/pathology , Apolipoproteins E/genetics , DNA Glycosylases/metabolism , DNA Polymerase beta/metabolism , Female , Humans , Male , Risk Factors , Uracil-DNA Glycosidase/metabolism
6.
Int J Mol Sci ; 20(13)2019 Jul 05.
Article in English | MEDLINE | ID: mdl-31284385

ABSTRACT

Mitochondrial oxidative stress accumulates with aging and age-related diseases and induces alterations in mitochondrial DNA (mtDNA) content. Since mtDNA qualitative alterations are also associated with aging, repair of mtDNA damage is of great importance. The most relevant form of DNA repair in this context is base excision repair (BER), which removes oxidized bases such as 8-oxoguanine (8-oxoG) and thymine glycol through the action of the mitochondrial isoform of the specific 8-oxoG DNA glycosylase/apurinic or apyrimidinic (AP) lyase (OGG1) or the endonuclease III homolog (NTH1). Mouse strains lacking OGG1 (OGG1-/-) or NTH1 (NTH1-/-) were analyzed for mtDNA alterations. Interestingly, both knockout strains presented a significant increase in mtDNA content, suggestive of a compensatory mtDNA replication. The mtDNA "common deletion" was not detected in either knockout mouse strain, likely because of the young age of the mice. Formamidopyrimidine DNA glycosylase (Fpg)-sensitive sites accumulated in mtDNA from OGG1-/- but not from NTH1-/- mice. Interestingly, the D-loop region was most severely affected by the absence of OGG1, suggesting that this region may be a hotspot for oxidative damage. Thus, we speculate that mtDNA alterations may send a stress message to evoke cell changes through a retrograde mitochondrial-nucleus communication.


Subject(s)
DNA Damage/genetics , DNA Glycosylases/genetics , DNA, Mitochondrial/genetics , Gene Deletion , Purines/metabolism , Animals , Base Pairing/genetics , Mice, Knockout , Oxidation-Reduction , Sequence Deletion
7.
Free Radic Biol Med ; 129: 1-24, 2018 12.
Article in English | MEDLINE | ID: mdl-30172747

ABSTRACT

Mitochondria possess a Ca2+ transport system composed of separate Ca2+ influx and efflux pathways. Intramitochondrial Ca2+ concentrations regulate oxidative phosphorylation, required for cell function and survival, and mitochondrial redox balance, that participates in a myriad of signaling and damaging pathways. The interaction between Ca2+ accumulation and redox imbalance regulates opening and closing of a highly regulated inner membrane pore, the membrane permeability transition pore (PTP). In this review, we discuss the regulation of the PTP by mitochondrial oxidants, reactive nitrogen species, and the interactions between these species and other PTP inducers. In addition, we discuss the involvement of mitochondrial redox imbalance and PTP in metabolic conditions such as atherogenesis, diabetes, obesity and in mtDNA stability.


Subject(s)
Atherosclerosis/metabolism , Calcium/metabolism , Diabetes Mellitus/metabolism , Mitochondria/metabolism , Mitochondrial Membrane Transport Proteins/metabolism , Obesity/metabolism , Animals , Atherosclerosis/genetics , Atherosclerosis/pathology , Cations, Divalent , DNA, Mitochondrial/genetics , DNA, Mitochondrial/metabolism , Diabetes Mellitus/genetics , Diabetes Mellitus/pathology , Humans , Ion Transport , Mitochondrial Membrane Transport Proteins/genetics , Mitochondrial Membranes/metabolism , Obesity/genetics , Obesity/pathology , Oxidation-Reduction , Oxidative Phosphorylation , Permeability , Reactive Nitrogen Species/metabolism , Signal Transduction
8.
Cell Biol Int ; 42(6): 643-650, 2018 Jun.
Article in English | MEDLINE | ID: mdl-29271530

ABSTRACT

DNA is constantly being damaged, either by endogenous or exogenous genotoxins. In that regard, DNA repair activities are essential for maintaining genomic stability and to life itself. Mutations in genes encoding DNA repair proteins cause severe human syndromes, but DNA repair defects have also been linked to several other diseases, notably to cancer and normal aging. Recently, new evidence has emerged indicating that some DNA repair diseases display mitochondrial and metabolic dysfunction through mechanisms that are yet being uncovered. These results suggest that mitochondria play an import role in the DNA damage response pathways and that damage accumulation may lead to mitochondrial dysfunction via metabolic imbalance and mitophagy impairment. Here we review the recent findings linking mitochondrial impairment and cell death to DNA damage accumulation in the context of DNA repair defects. In addition, the general involvement of DNA damage in cellular dysfunction suggests that these phenomena may be also involved in other human pathologies in which mitochondrial dysfunction and metabolic disruption play causative roles.


Subject(s)
Congenital Abnormalities/etiology , DNA Repair , Mitochondria/metabolism , Animals , Ataxia Telangiectasia/etiology , Ataxia Telangiectasia/genetics , Cockayne Syndrome/etiology , Cockayne Syndrome/genetics , Congenital Abnormalities/genetics , DNA Damage , Humans , Mitophagy , Xeroderma Pigmentosum/etiology , Xeroderma Pigmentosum/genetics
9.
Sci Rep ; 7(1): 155, 2017 03 13.
Article in English | MEDLINE | ID: mdl-28273955

ABSTRACT

Genomic instability drives tumorigenesis and DNA repair defects are associated with elevated cancer. Metabolic alterations are also observed during tumorigenesis, although a causal relationship between these has not been clearly established. Xeroderma pigmentosum (XP) is a DNA repair disease characterized by early cancer. Cells with reduced expression of the XPC protein display a metabolic shift from OXPHOS to glycolysis, which was linked to accumulation of nuclear DNA damage and oxidants generation via NOX-1. Using XP-C cells, we show that mitochondrial respiratory complex I (CI) is impaired in the absence of XPC, while complex II (CII) is upregulated in XP-C cells. The CI/CII metabolic shift was dependent on XPC, as XPC complementation reverted the phenotype. We demonstrate that mitochondria are the primary source of H2O2 and glutathione peroxidase activity is compromised. Moreover, mtDNA is irreversibly damaged and accumulates deletions. XP-C cells were more sensitive to the mitochondrial inhibitor antimycin A, an effect also prevented in XPC-corrected cells. Our results show that XPC deficiency leads to alterations in mitochondrial redox balance with a CI/CII shift as a possible adaptation to lower CI activity, but at the cost of sensitizing XP-C cells to mitochondrial oxidative stress.


Subject(s)
DNA-Binding Proteins/genetics , Electron Transport Complex II/metabolism , Electron Transport Complex I/metabolism , Mitochondria/genetics , Xeroderma Pigmentosum/genetics , Cell Line , DNA, Mitochondrial/genetics , DNA-Binding Proteins/metabolism , Gene Expression Regulation , Glutathione Peroxidase/metabolism , Humans , Hydrogen Peroxide/metabolism , Mitochondria/metabolism , Oxidative Stress , Sequence Deletion , Xeroderma Pigmentosum/metabolism
10.
Sci Rep ; 7: 40544, 2017 01 12.
Article in English | MEDLINE | ID: mdl-28079150

ABSTRACT

The occurrence of biochemical alterations that last for a long period of time in diabetic individuals even after adequate handling of glycemia is an intriguing phenomenon named metabolic memory. In this study, we show that a kidney pathway is gradually altered during the course of diabetes and remains persistently changed after late glycemic control in streptozotocin-induced diabetic rats. This pathway comprises an early decline of uric acid clearance and pAMPK expression followed by fumarate accumulation, increased TGF-ß expression, reduced PGC-1α expression, and downregulation of methylation and hydroxymethylation of mitochondrial DNA. The sustained decrease of uric acid clearance in treated diabetes may support the prolonged kidney biochemical alterations observed after tight glycemic control, and this regulation is likely mediated by the sustained decrease of AMPK activity and the induction of inflammation. This manuscript proposes the first consideration of the possible role of hyperuricemia and the underlying biochemical changes as part of metabolic memory in diabetic nephropathy development after glycemic control.


Subject(s)
Diabetes Mellitus, Experimental/metabolism , Diabetes Mellitus, Experimental/pathology , Kidney/metabolism , Kidney/pathology , Adenylate Kinase/metabolism , Animals , Blood Glucose/metabolism , DNA, Mitochondrial/metabolism , Diabetes Mellitus, Experimental/physiopathology , Fasting/blood , Fumarates/metabolism , Hyperglycemia/blood , Hyperglycemia/physiopathology , Kidney/physiopathology , Male , Malondialdehyde/metabolism , Mitochondria/metabolism , Models, Biological , Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha/metabolism , Phosphorylation , Rats, Wistar , Transforming Growth Factor beta/metabolism
11.
Sci Rep ; 6: 19712, 2016 Jan 27.
Article in English | MEDLINE | ID: mdl-26815639

ABSTRACT

DNA repair mechanisms are responsible for maintaining the integrity of DNA and are essential to life. However, our knowledge of DNA repair mechanisms is based on model organisms such as Escherichia coli, and little is known about free living and uncultured microorganisms. In this study, a functional screening was applied in a metagenomic library with the goal of discovering new genes involved in the maintenance of genomic integrity. One clone was identified and the sequence analysis showed an open reading frame homolog to a hypothetical protein annotated as a member of the Exo_Endo_Phos superfamily. This novel enzyme shows 3'-5' exonuclease activity on single and double strand DNA substrates and it is divalent metal-dependent, EDTA-sensitive and salt resistant. The clone carrying the hypothetical ORF was able to complement strains deficient in recombination or base excision repair, suggesting that the new enzyme may be acting on the repair of single strand breaks with 3' blockers, which are substrates for these repair pathways. Because this is the first report of an enzyme obtained from a metagenomic approach showing exonuclease activity, it was named ExoMeg1. The metagenomic approach has proved to be a useful tool for identifying new genes of uncultured microorganisms.


Subject(s)
Exodeoxyribonucleases/chemistry , Exodeoxyribonucleases/genetics , Genomic Library , Metagenome
12.
Mutat Res ; 784-785: 25-33, 2016.
Article in English | MEDLINE | ID: mdl-26811994

ABSTRACT

Oxidative DNA damage is considered to be a major cause of neurodegeneration and internal tumors observed in syndromes that result from nucleotide excision repair (NER) deficiencies, such as Xeroderma Pigmentosum (XP) and Cockayne Syndrome (CS). Recent evidence has shown that NER aids in removing oxidized DNA damage and may interact with base excision repair (BER) enzymes. Here, we investigated APE1 and OGG1 expression, localization and activity after oxidative stress in XPC-deficient cells. The endogenous APE1 and OGG1 mRNA levels were lower in XPC-deficient fibroblasts. However, XPC-deficient cells did not show hypersensitivity to oxidative stress compared with NER-proficient cells. To confirm the impact of an XPC deficiency in regulating APE1 and OGG1 expression and activity, we established an XPC-complemented cell line. Although the XPC complementation was only partial and transient, the transfected cells exhibited greater OGG1 expression and activity compared with XPC-deficient cells. However, the APE1 expression and activity did not significantly change. Furthermore, we observed a physical interaction between the XPC and APE1 proteins. Together, the results indicate that the responses of XPC-deficient cells under oxidative stress may not only be associated with NER deficiency per se but may also include new XPC functions in regulating BER proteins.


Subject(s)
DNA Glycosylases/metabolism , DNA-(Apurinic or Apyrimidinic Site) Lyase/metabolism , DNA-Binding Proteins/metabolism , Cells, Cultured , DNA Glycosylases/genetics , DNA Repair/physiology , DNA-(Apurinic or Apyrimidinic Site) Lyase/genetics , DNA-Binding Proteins/deficiency , DNA-Binding Proteins/genetics , Fibroblasts/drug effects , Fibroblasts/pathology , Gene Expression Regulation , Humans , Hydrogen Peroxide/pharmacology , Immunoprecipitation , Oxidants/pharmacology , Oxidative Stress , RNA, Messenger/metabolism , Xeroderma Pigmentosum/genetics , Xeroderma Pigmentosum/pathology
13.
Mutat Res ; 776: 48-53, 2015 Jun.
Article in English | MEDLINE | ID: mdl-26255940

ABSTRACT

Most human tissues used in research are of post mortem origin. This is the case for all brain samples, and due to the difficulty in obtaining a good number of samples, especially in the case of neurodegenerative diseases, male and female samples are often included in the same experimental group. However, the effects of post mortem interval (PMI) and gender differences in the endpoints being analyzed are not always fully understood, as is the case for DNA repair activities. To investigate these effects, in a controlled genetic background, base excision repair (BER) activities were measured in protein extracts obtained from Wistar rat brains from different genders and defined PMI up to 24 hours, using a novel fluorescent-based in vitro incision assay. Uracil and AP-site incision activity in nuclear and mitochondrial extracts were similar in all groups included in this study. Our results show that gender and PMI up to 24 hours have no influence in the activities of the BER proteins UDG and APE1 in rat brains. These findings demonstrate that these variables do not interfere on the BER activities included in these study, and provide a security window to work with UDG and APE1 proteins in samples of post mortem origin.


Subject(s)
Brain/metabolism , DNA Repair , Postmortem Changes , Sex Characteristics , Animals , DNA-(Apurinic or Apyrimidinic Site) Lyase/metabolism , Female , Humans , Male , Rats , Time Factors
14.
Arch Biochem Biophys ; 557: 55-64, 2014 Sep 01.
Article in English | MEDLINE | ID: mdl-24893147

ABSTRACT

Eumelanin is a heterogeneous polymer composed of 5,6-dihydroxyindole-2-carboxylic acid (DHICA) and 5,6-dihydroxyindole (DHI). Studies have shown that DHICA promotes single strand breaks in plasmid DNA exposed to ultraviolet B radiation (UVB, 313 nm) and in DNA from human keratinocytes exposed to ultraviolet A radiation (UVA, 340-400 nm). Singlet molecular oxygen ((1)O2) is the main reactive species formed by UVA radiation on the skin. In this context, we now report that DHICA can cause single strand breaks in plasmid DNA even in the absence of light radiation. Interestingly, when DHICA was pre-oxidized by (1)O2, it lost this harmful capacity. It was also found that DHICA could interact with DNA, disturbing Fpg activity and decreasing its recognition of lesions by ∼50%. Additionally, the free nucleoside deoxyguanosine (dGuo) was used to evaluate whether DHICA would interfere with the formation of 8-oxo-7,8-dihydro-2'-deoxyguanosine (8-oxodGuo) and spiroiminodihydantoin (dSp) by (1)O2 or with the formation of 8-oxodGuo by hydroxyl radical (OH). We observed that when dGuo was oxidized by (1)O2 in the presence of DHICA, 8-oxodGuo formation was increased. However, when dGuo was oxidized by OH in the presence of DHICA, 8-oxodGuo levels were lower than in the absence of the precursor. Overall, our data reveal an important role for this eumelanin precursor in both the promotion and the protection of DNA damage and imply that it can impair DNA repair.


Subject(s)
DNA Damage , DNA Repair , Indoles/chemistry , Reactive Oxygen Species/chemistry
15.
Mitochondrion ; 17: 164-81, 2014 Jul.
Article in English | MEDLINE | ID: mdl-24704805

ABSTRACT

The mitochondrial DNA (mtDNA) encodes for only 13 polypeptides, components of 4 of the 5 oxidative phosphorylation complexes. But despite this apparently small numeric contribution, all 13 subunits are essential for the proper functioning of the oxidative phosphorylation circuit. Thus, accumulation of lesions, mutations and deletions/insertions in the mtDNA could have severe functional consequences, including mitochondrial diseases, aging and age-related diseases. The DNA is a chemically unstable molecule, which can be easily oxidized, alkylated, deaminated and suffer other types of chemical modifications, throughout evolution the organisms that survived were those who developed efficient DNA repair processes. In the last two decades, it has become clear that mitochondria have DNA repair pathways, which operate, at least for some types of lesions, as efficiently as the nuclear DNA repair pathways. The mtDNA is localized in a particularly oxidizing environment, making it prone to accumulate oxidatively generated DNA modifications (ODMs). In this article, we: i) review the major types of ODMs formed in mtDNA and the known repair pathways that remove them; ii) discuss the possible involvement of other repair pathways, just recently characterized in mitochondria, in the repair of these modifications; and iii) address the role of DNA repair in mitochondrial function and a possible cross-talk with other pathways that may potentially participate in mitochondrial genomic stability, such as mitochondrial dynamics and nuclear-mitochondrial signaling. Oxidative stress and ODMs have been increasingly implicated in disease and aging, and thus we discuss how variations in DNA repair efficiency may contribute to the etiology of such conditions or even modulate their clinical outcomes.


Subject(s)
DNA Damage/drug effects , DNA Repair , DNA, Mitochondrial/drug effects , Mitochondria/physiology , Oxidants/toxicity , Humans , Mitochondria/drug effects
16.
Environ Mol Mutagen ; 55(4): 309-21, 2014 May.
Article in English | MEDLINE | ID: mdl-24347026

ABSTRACT

Benznidazole (BZ) is the most commonly used drug for the treatment of Chagas disease. Although BZ is known to induce the formation of free radicals and electrophilic metabolites within the parasite Trypanosoma cruzi, its precise mechanisms of action are still elusive. Here, we analyzed the survival of T. cruzi exposed to BZ using genetically modified parasites overexpressing different DNA repair proteins. Our results indicate that BZ induces oxidation mainly in the nucleotide pool, as heterologous expression of the nucleotide pyrophosphohydrolase MutT (but not overexpression of the glycosylase TcOgg1) increased drug resistance in the parasite. In addition, electron microscopy indicated that BZ catalyzes the formation of double-stranded breaks in the parasite, as its genomic DNA undergoes extensive heterochromatin unpacking following exposure to the drug. Furthermore, the overexpression of proteins involved in the recombination-mediated DNA repair increased resistance to BZ, reinforcing the idea that the drug causes double-stranded breaks. Our results also show that the overexpression of mitochondrial DNA repair proteins increase parasite survival upon BZ exposure, indicating that the drug induces lesions in the mitochondrial DNA as well. These findings suggest that BZ preferentially oxidizes the nucleotide pool, and the extensive incorporation of oxidized nucleotides during DNA replication leads to potentially lethal double-stranded DNA breaks in T. cruzi DNA.


Subject(s)
DNA Repair Enzymes/genetics , Drug Resistance/genetics , Nitroimidazoles/pharmacology , Protozoan Proteins/genetics , Trypanocidal Agents/pharmacology , Trypanosoma cruzi/drug effects , Animals , Cell Survival , Chagas Disease/drug therapy , Chagas Disease/genetics , Chagas Disease/parasitology , DNA Glycosylases/genetics , DNA Repair/drug effects , DNA, Protozoan/drug effects , Guanine/analogs & derivatives , Guanine/metabolism , Real-Time Polymerase Chain Reaction , Trypanosoma cruzi/genetics
17.
Eur J Pharmacol ; 701(1-3): 82-6, 2013 Feb 15.
Article in English | MEDLINE | ID: mdl-23333250

ABSTRACT

Mitochondrial oxidative stress followed by membrane permeability transition (MPT) has been considered as a possible mechanism for statins cytotoxicity. Statins use has been associated with reduced risk of cancer incidence, especially prostate cancer. Here we investigated the pathways leading to simvastatin-induced prostate cancer cell death as well as the mechanisms of cell death protection by l-carnitine or piracetam. These compounds are known to prevent and/or protect against cell death mediated by oxidative mitochondrial damage induced by a variety of conditions, either in vivo or in vitro. The results provide evidence that simvastatin induced MPT and cell necrosis were sensitive to either l-carnitine or piracetam in a dose-dependent fashion and mediated by additive mechanisms. When combined, l-carnitine and piracetam acted at concentrations significantly lower than they act individually. These results shed new light into both the cytotoxic mechanisms of statins and the mechanisms underlying the protection against MPT and cell death by the compounds l-carnitine and piracetam.


Subject(s)
Carnitine/pharmacology , Mitochondrial Membrane Transport Proteins/antagonists & inhibitors , Piracetam/pharmacology , Simvastatin/pharmacology , Cell Line, Tumor , Cyclosporine/pharmacology , Drug Synergism , Humans , Mitochondria/drug effects , Mitochondria/metabolism , Mitochondrial Permeability Transition Pore , Necrosis/prevention & control , Superoxides/metabolism
18.
Nucleic Acids Res ; 39(18): 7992-8004, 2011 Oct.
Article in English | MEDLINE | ID: mdl-21737425

ABSTRACT

Oxidative DNA damage plays a role in disease development and the aging process. A prominent participant in orchestrating the repair of oxidative DNA damage, particularly single-strand breaks, is the scaffold protein XRCC1. A series of chronological and biological aging parameters in XRCC1 heterozygous (HZ) mice were examined. HZ and wild-type (WT) C57BL/6 mice exhibit a similar median lifespan of ~26 months and a nearly identical maximal life expectancy of ~37 months. However, a number of HZ animals (7 of 92) showed a propensity for abdominal organ rupture, which may stem from developmental abnormalities given the prominent role of XRCC1 in endoderm and mesoderm formation. For other end-points evaluated-weight, fat composition, blood chemistries, condition of major organs, tissues and relevant cell types, behavior, brain volume and function, and chromosome and telomere integrity-HZ mice exhibited by-and-large a normal phenotype. Treatment of animals with the alkylating agent azoxymethane resulted in both liver toxicity and an increased incidence of precancerous lesions in the colon of HZ mice. Our study indicates that XRCC1 haploinsufficiency in mammals has little effect on chronological longevity and many key biological markers of aging in the absence of environmental challenges, but may adversely affect normal animal development or increase disease susceptibility to a relevant genotoxic exposure.


Subject(s)
Aging/genetics , DNA-Binding Proteins/genetics , Haploinsufficiency , Alkylating Agents/toxicity , Animals , Behavior, Animal , Body Weight , Bone Marrow Cells/drug effects , Brain/anatomy & histology , Brain/metabolism , Cell Survival/drug effects , Chemical and Drug Induced Liver Injury/pathology , Disease Susceptibility , Female , Genomic Instability , Male , Mice , Mice, Inbred C57BL , Mutagens/toxicity , X-ray Repair Cross Complementing Protein 1
19.
Curr Gerontol Geriatr Res ; 2011: 859415, 2011.
Article in English | MEDLINE | ID: mdl-21559242

ABSTRACT

The liver plays a pivotal role in the metabolism of nutrients, drugs, hormones, and metabolic waste products, thereby maintaining body homeostasis. The liver undergoes substantial changes in structure and function within old age. Such changes are associated with significant impairment of many hepatic metabolic and detoxification activities, with implications for systemic aging and age-related disease. It has become clear, using rodent models as biological tools, that genetic instability in the form of gross DNA rearrangements or point mutations accumulate in the liver with age. DNA lesions, such as oxidized bases or persistent breaks, increase with age and correlate well with the presence of senescent hepatocytes. The level of DNA damage and/or mutation can be affected by changes in carcinogen activation, decreased ability to repair DNA, or a combination of these factors. This paper covers some of the DNA repair pathways affecting liver homeostasis with age using rodents as model systems.

20.
Anticancer Res ; 30(12): 4963-71, 2010 Dec.
Article in English | MEDLINE | ID: mdl-21187477

ABSTRACT

Oxidative damage to DNA is thought to play a role in carcinogenesis by causing mutations, and indeed accumulation of oxidized DNA bases has been observed in samples obtained from tumors but not from surrounding tissue within the same patient. Base excision repair (BER) is the main pathway for the repair of oxidized modifications both in nuclear and mitochondrial DNA. In order to ascertain whether diminished BER capacity might account for increased levels of oxidative DNA damage in cancer cells, the activities of BER enzymes in three different lung cancer cell lines and their non-cancerous counterparts were measured using oligonucleotide substrates with single DNA lesions to assess specific BER enzymes. The activities of four BER enzymes, OGG1, NTH1, UDG and APE1, were compared in mitochondrial and nuclear extracts. For each specific lesion, the repair activities were similar among the three cell lines used. However, the specific activities and cancer versus control comparison differed significantly between the nuclear and mitochondrial compartments. OGG1 activity, as measured by 8-oxodA incision, was up-regulated in cancer cell mitochondria but down-regulated in the nucleus when compared to control cells. Similarly, NTH1 activity was also up-regulated in mitochondrial extracts from cancer cells but did not change significantly in the nucleus. Together, these results support the idea that alterations in BER capacity are associated with carcinogenesis.


Subject(s)
DNA Repair , Lung Neoplasms/enzymology , Lung Neoplasms/genetics , Cell Line, Tumor , Cell Nucleus/enzymology , Cell Nucleus/genetics , Cell Transformation, Neoplastic/genetics , Cell Transformation, Neoplastic/metabolism , DNA Damage , DNA Glycosylases/metabolism , DNA, Mitochondrial/genetics , DNA, Mitochondrial/metabolism , DNA, Neoplasm/genetics , DNA, Neoplasm/metabolism , DNA-(Apurinic or Apyrimidinic Site) Lyase/metabolism , Deoxyribonuclease (Pyrimidine Dimer)/metabolism , Genomic Instability , Humans , Mitochondria/enzymology , Mitochondria/genetics , Uracil-DNA Glycosidase/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...