Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Heliyon ; 10(7): e28830, 2024 Apr 15.
Article in English | MEDLINE | ID: mdl-38586333

ABSTRACT

Understanding the complex mechanisms involved in diseases caused by or related to important genetic variants has led to the development of clinically useful biomarkers. However, the increasing number of described variants makes it difficult to identify variants worthy of investigation, and poses challenges to their validation. We combined publicly available datasets and open source robust bioinformatics tools with molecular quantum chemistry methods to investigate the involvement of selectins, important molecules in the cell adhesion process that play a fundamental role in the cancer metastasis process. We applied this strategy to investigate single nucleotide variants (SNPs) in the intronic and UTR regions and missense SNPs with amino acid changes in the SELL, SELP, SELE, and SELPLG genes. We then focused on thyroid cancer, seeking these SNPs potential to identify biomarkers for susceptibility, diagnosis, prognosis, and therapeutic targets. We demonstrated that SELL gene polymorphisms rs2229569, rs1131498, rs4987360, rs4987301 and rs2205849; SELE gene polymorphisms rs1534904 and rs5368; rs3917777, rs2205894 and rs2205893 of SELP gene; and rs7138370, rs7300972 and rs2228315 variants of SELPLG gene may produce important alterations in the DNA structure and consequent changes in the morphology and function of the corresponding proteins. In conclusion, we developed a strategy that may save valuable time and resources in future investigations, as we were able to provide a solid foundation for the selection of selectin gene variants that may become important biomarkers and deserve further investigation in cancer patients. Large-scale clinical studies in different ethnic populations and laboratory experiments are needed to validate our results.

2.
Sci Rep ; 13(1): 4069, 2023 03 11.
Article in English | MEDLINE | ID: mdl-36906717

ABSTRACT

To better understand the relationship among cell adhesion molecules (CAM) and investigate the clinical diagnostic and prognostic application of ICAM-1 (ICAM1), LFA-1 (ITGAL), and L-selectin (SELL) proteins and mRNA corresponding expression in thyroid cancer. Gene expression was evaluated by RT-qPCR, and protein expression was evaluated by immunohistochemistry. We evaluated 275 patients (218 women, 57 men, 48.4 ± 14.5 years old), including 102 benign and 173 malignant nodules. The 143 papillary thyroid carcinoma (PTC) and 30 follicular thyroid carcinoma (FTC) patients were managed according to current guidelines and followed-up for 78.7 ± 54.2 months. Malignant and benign nodules differed concerning mRNA (p = 0.0027) and protein (p = 0.0020 for nuclear) expression of L-selectin and ICAM-1 (mRNA: p = 0.0001 and protein: p = 0.0014) and protein expression of LFA-1 (p = 0.0168), but not mRNA expression of LFA-1 (p = 0.2131). SELL expression was more intense in malignant tumors (p = 0.0027). ICAM1 (p = 0.0064) and ITGAL (p = 0.0244) mRNA expression was higher in tumors with lymphocyte infiltrate. ICAM-1 expression correlated with younger age at diagnosis (p = 0.0312) and smaller tumor size (p = 0.0443). Also, LFA-1 expression correlated with higher age at diagnosis (p = 0.0376) and was more intense at stage III and IV (p = 0.0077). In general, the protein expression of the 3 CAM decreased as the process of cellular dedifferentiation occurred. We suggest that the SELL and ICAM1 genes and L-selectin and LFA-1 protein expression may help confirm malignancy and assist in the histological characterization of follicular patterned lesions, but we were unable to correlate these CAMs with patient outcomes.


Subject(s)
Thyroid Neoplasms , Thyroid Nodule , Male , Humans , Female , Adult , Middle Aged , Thyroid Nodule/pathology , Intercellular Adhesion Molecule-1 , L-Selectin , Lymphocyte Function-Associated Antigen-1 , Thyroid Neoplasms/pathology , Cell Adhesion Molecules
3.
Arch Endocrinol Metab ; 64(6): 787-795, 2021 Nov 01.
Article in English | MEDLINE | ID: mdl-33049131

ABSTRACT

OBJECTIVE: We aimed to investigate the role of DIO2 polymorphisms rs225014 and rs12885300 in Graves' disease patients, mainly for controlling body weight following treatment. METHODS: We genotyped 280 GD patients by the time of diagnosis and 297 healthy control individuals using a TaqMan SNP Genotyping technique. We followed up 141 patients for 18.94 ± 6.59 months after treatment. RESULTS: There was no relationship between the investigated polymorphisms with susceptibility to GD and gain or loss of weight after GD treatment. However, the polymorphic inheritance (CC+CT genotype) of DIO2 rs225014 was associated with a lower body weight variation after GD treatment (4.26 ± 6.25 kg) when compared to wild type TT genotype (6.34 ± 7.26 kg; p = 0.0456 adjusted for the follow-up time). This data was confirmed by a multivariate analysis (p = 0.0138) along with a longer follow-up period (p = 0.0228), older age (p = 0.0306), treatment with radioiodine (p-value = 0.0080) and polymorphic inheritance of DIO2 rs12885300 (p = 0.0306). CONCLUSION: We suggest that DIO2 rs225014 genotyping may have an auxiliary role in predicting the post-treatment weight behavior of GD patients.


Subject(s)
Body Weight , Graves Disease , Iodide Peroxidase/genetics , Iodine Radioisotopes , Case-Control Studies , Gene Frequency , Genetic Predisposition to Disease , Graves Disease/genetics , Graves Disease/therapy , Humans , Inheritance Patterns , Polymorphism, Single Nucleotide , Iodothyronine Deiodinase Type II
4.
Endocrine ; 69(2): 321-330, 2020 08.
Article in English | MEDLINE | ID: mdl-32166585

ABSTRACT

Although the evolution of differentiated thyroid cancer (DTC) is usually indolent, some tumors grow fast, metastasize, and may be fatal. Viruses have been associated with many human tumors, especially the Epstein-Barr virus (EBV), which shows a high viral load in DTC. In order to evaluate the ability of the virus to cause morphological and molecular changes in neoplastic thyroid cell lines TPC-1, BCPAP, and 8505C, a viral adaptation was performed for the analysis of EBV cytopathic effect (CPE), viral kinetics and gene expression analysis of oncogenes KRAS, NRAS, HRAS, and TP53. Comparison of inoculated cells with non-inoculated control cells showed that all tumor cell lines were permissive to the virus. The virus caused CPE in the TPC-1 and 8505C, but not in BCPAP cells. Viral kinetic was similar in both BCPAP and 8505C with a point of eclipse at 24 h post infection. TPC-1 cell line displayed a decreasing growth curve, with highest viral load right after inoculation, which decreased over time. There was hyperexpression of TP53 and NRAS in BCPAP cell (p = 0.012 and p = 0.0344, respectively). The 8505C cell line presented NRAS hyperexpression (p = 0.0255), but lower TP53 expression (p = 0.0274). We concluded that neoplastic thyroid cell lines are permissive to EBV that the virus presents different viral kinetic patterns in different cell lines and produces a CPE on both well-differentiated and undifferentiated thyroid cell lines. We also demonstrated that EBV interferes in oncogene expression in thyroid neoplastic cell lines, suggesting that these effects could be related to different tumor progression patterns.


Subject(s)
Epstein-Barr Virus Infections , Thyroid Neoplasms , Cell Line, Tumor , Epstein-Barr Virus Infections/complications , Epstein-Barr Virus Infections/genetics , Herpesvirus 4, Human , Humans , Thyroid Neoplasms/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...