Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 111
Filter
1.
J Esthet Restor Dent ; 2024 Jun 09.
Article in English | MEDLINE | ID: mdl-38853343

ABSTRACT

AIM: This study evaluated the efficacy and cytotoxicity of 35% hydrogen peroxide (HP) gel incorporated with 10% (w/w) biosilicate (BioS) on sound enamel and early-stage enamel erosion lesions. METHODS: Discs of enamel/dentin were selected, subjected to erosive cycles (0.3% citric acid, pH 2.6), and treated with (n = 8): HP (35% HP, positive control); HP_BioS [carboxymethyl cellulose (CMC) + HP + BioS]; BioS (CMC + BioS); CMC (negative control). The discs were adapted to artificial pulp chambers with the enamel exposed for bleaching, and the dentin facing toward the culture medium (Dulbecco's modified Eagle's medium [DMEM]). Bleaching was performed in three 30-min sessions at 7-day intervals. After bleaching, the diffusion product (DMEM extract + diffused HP) was pipetted onto MDPC-23 odontoblastic cell line and inoculated. Color parameters (ΔL, Δa, Δb), color change (ΔE00), and changes in whiteness index (ΔWID) were determined before (T0) and after the last bleaching session (T3). Cell viability (MTT, %), H2O2 diffusion (µg/mL), oxidative cell stress (OxS), and cell fluorescence (live/dead assay, in confocal microscopy) were assessed (ANOVA/Tukey; α = 0.05). RESULTS: No difference in ΔL, Δa, Δb, ΔE00, and ΔWID were found between HP and HP_BioS (p > 0.05). The incorporation of BioS decreased the HP diffusion into the substrates and mitigated oxidative stress in early-stage eroded enamel (p < 0.05). HP_BioS presented significantly higher cell viability compared with HP under erosion conditions. Live/dead assay indicated that BioS_HP maintained viability with larger clusters of viable cells. CONCLUSION: Incorporating BioS into HP maintained bleaching effectiveness, favored cell viability, reduced the oxidative stress, and the cytotoxicity in teeth with early-stage erosion. CLINICAL SIGNIFICANCE: BioS formulation showed promising results for reducing cytotoxicity in patients seeking tooth bleaching and presenting undetectable early-stage erosion.

2.
Dent Mater ; 2024 Jun 12.
Article in English | MEDLINE | ID: mdl-38871524

ABSTRACT

OBJECTIVES: To investigate the transdentinal effects of surface reaction-type pre-reacted glass-ionomer (S-PRG) fillers on odontoblast-like cells. METHODS: An eluate of S-PRG fillers was obtained by dissolving the particles in distilled water (1:1 m/v). Dentin discs with similar permeability were mounted into artificial pulp chambers and MDPC-23 cells were seeded on their pulpal surface. The occlusal surface was treated with (n = 10): ultrapure water (negative control - NC), hydrogen peroxide (positive control - PC), S-PRG eluate exposure for 1 min (S-PRG 1 min), or S-PRG filler eluate exposure for 30 min (S-PRG 30 min). After 24 h, cell viability (alamarBlue) and morphology (SEM) were evaluated. The extract obtained from transdentinal diffusion was applied to MDPC-23 pre-cultured in plates for another 24 h to evaluate viability (alamarBlue, 1, 3, and 7 days), gene expression of Col1a1, Alpl, Dspp, and Dmp1 (RT-qPCR, 1 and 7 days), and mineralization (Alizarin Red, 7 days). Data were analyzed with ANOVA (α = 5 %). RESULTS: While S-PRG 1 min did not differ from NC, S-PRG 30 min reduced 17.9 % viability of cells from discs. S-PRG treatments resulted in low cell detaching from dentin, and the remaining cells exhibited typical morphology or minor cytoplasmic contraction. S-PRG 30 min slightly increased cell viability (6 %) 1 day after contact with the extract. S-PRG treatments upregulated the expression of the investigated genes, especially after 1 day. S-PRG 30 min stimulated mineralization activity by 39.7 %. CONCLUSIONS: S-PRG filler eluate does not cause transdentinal cytotoxicity on odontoblast-like cells, and long-term exposure can stimulate their dentinogenic-related mineralization activity. SIGNIFICANCE: The transdentinal elution of ions from S-PRG fillers is not expected to be harmful to the dental pulp and may exert bioactive effects by inducing dentin matrix deposition through the metabolism of underlying odontoblasts.

3.
J Funct Biomater ; 15(4)2024 Apr 10.
Article in English | MEDLINE | ID: mdl-38667554

ABSTRACT

This study investigated the incorporation of sources of calcium, phosphate, or both into electrospun scaffolds and evaluated their bioactivity on human dental pulp cells (HDPCs). Additionally, scaffolds incorporated with calcium hydroxide (CH) were characterized for degradation, calcium release, and odontogenic differentiation by HDPCs. Polycaprolactone (PCL) was electrospun with or without 0.5% w/v of calcium hydroxide (PCL + CH), nano-hydroxyapatite (PCL + nHA), or ß-glycerophosphate (PCL + ßGP). SEM/EDS analysis confirmed fibrillar morphology and particle incorporation. HDPCs were cultured on the scaffolds to assess cell viability, adhesion, spreading, and mineralized matrix formation. PCL + CH was also evaluated for gene expression of odontogenic markers (RT-qPCR). Data were submitted to ANOVA and Student's t-test (α = 5%). Added CH increased fiber diameter and interfibrillar spacing, whereas ßGP decreased both. PCL + CH and PCL + nHA improved HDPC viability, adhesion, and proliferation. Mineralization was increased eightfold with PCL + CH. Scaffolds containing CH gradually degraded over six months, with calcium release within the first 140 days. CH incorporation upregulated DSPP and DMP1 expression after 7 and 14 days. In conclusion, CH- and nHA-laden PCL fiber scaffolds were cytocompatible and promoted HDPC adhesion, proliferation, and mineralized matrix deposition. PCL + CH scaffolds exhibit a slow degradation profile, providing sustained calcium release and stimulating HDPCs to upregulate odontogenesis marker genes.

4.
J Mech Behav Biomed Mater ; 153: 106497, 2024 May.
Article in English | MEDLINE | ID: mdl-38458078

ABSTRACT

OBJECTIVE: To evaluate whether coating enamel with a polymeric primer (PPol) containing titanium tetrafluoride (TiF4) before applying a bleaching gel with 35% H2O2 (35% BG) increases esthetic efficacy, prevents changes in morphology and hardness of enamel, as well as reduces the cytotoxicity from conventional in-office bleaching. MATERIALS AND METHODS: Standardized enamel/dentin discs were stained and bleached for 45 min (one session) with 35% BG. Groups 2TiF4, 6TiF4, and 10TiF4 received the gel on the enamel previously coated with PPol containing 2 mg/mL, 6 mg/mL, or 10 mg/mL, respectively. No treatment or application of 35% BG directly on enamel were used as negative control (NC), and positive control (PC), respectively. UV-reflectance spectrophotometry (CIE L*a*b* system, ΔE00, and ΔWI, n = 8) determined the bleaching efficacy of treatments. Enamel microhardness (Knoop, n = 8), morphology, and composition (SEM/EDS, n = 4) were also evaluated. Enamel/dentin discs adapted to artificial pulp chambers (n = 8) were used for trans-amelodentinal cytotoxicity tests. Following the treatments, the extracts (culture medium + bleaching gel components diffused through the discs) were collected and applied to odontoblast-like MDPC-23 cells, which were assessed concerning their viability (alamarBlue, n = 8; Live/Dead, n = 4), oxidative stress (n = 8), and morphology (SEM). The amount of H2O2 in the extracts was also determined (leuco crystal violet/peroxidase, n = 8). The numerical data underwent one-criterion variance analysis (one-way ANOVA), followed by Tukey's test, at a 5% significance level. RESULTS: Regarding the ΔE00, no difference was observed among groups 2TiF4, 6TiF4, and PC (p > 0.05). The ΔWI was similar between groups 2TiF4 and PC (p > 0.05). The ΔWI of group 6TiF4 was superior to PC (p < 0.05), and group 10TiF4 achieved the highest ΔE00 and ΔWI values (p < 0.05). Besides limiting enamel microstructural changes compared to PC, group 10TiF4 significantly increased the hardness of this mineralized dental tissue. The highest cellular viability occurred in 10TiF4 compared to the other bleached groups (p < 0.05). Trans-amelodentinal H2O2 diffusion decreased in groups 2TiF4, 6TiF4, and 10TiF4 in comparison with PC (p < 0.05). CONCLUSION: Coating enamel with a PPol containing TiF4 before applying a 35% BG may increase enamel microhardness and esthetic efficacy and reduce the trans-amelodentinal cytotoxicity of conventional in-office tooth bleaching. The PPol containing 10 mg/mL of TiF4 promoted the best outcomes.


Subject(s)
Tooth Bleaching Agents , Tooth Bleaching , Hydrogen Peroxide/chemistry , Tooth Bleaching Agents/pharmacology , Dentin , Tooth Bleaching/adverse effects , Dental Enamel
5.
Altern Lab Anim ; 52(2): 107-116, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38351650

ABSTRACT

In vitro models of the dental pulp microenvironment have been proposed for the assessment of biomaterials, to minimise animal use in operative dentistry. In this study, a scaffold/3-D dental pulp cell culture interface was created in a microchip, under simulated dental pulp pressure, to evaluate the cell-homing potential of a chitosan (CH) scaffold functionalised with calcium aluminate (the 'CHAlCa scaffold'). This microphysiological platform was cultured at a pressure of 15 cm H2O for up to 14 days; cell viability, migration and odontoblastic differentiation were then assessed. The CHAlCa scaffold exhibited intense chemotactic potential, causing cells to migrate from the 3-D culture to its surface, followed by infiltration into the macroporous structure of the scaffold. By contrast, the cells in the presence of the non-functionalised chitosan scaffold showed low cell migration and no cell infiltration. CHAlCa scaffold bioactivity was confirmed in dentin sialophosphoprotein-positive migrating cells, and odontoblastic markers were upregulated in 3-D culture. Finally, in situ mineralised matrix deposition by the cells was confirmed in an Alizarin Red-based assay, in which the CHAlCa and CH scaffolds were adapted to fit within dentin discs. More intense deposition of matrix was observed with the CHAlCa scaffold, as compared to the CH scaffold. In summary, we present an in vitro platform that provides a simple and reproducible model for selecting and developing innovative biomaterials through the assessment of their cell-homing potential. By using this platform, it was shown that the combination of calcium aluminate and chitosan has potential as an inductive biomaterial that can mediate dentin tissue regeneration during cell-homing therapies.


Subject(s)
Aluminum Compounds , Calcium Compounds , Chitosan , Animals , Tissue Scaffolds/chemistry , Dental Pulp , Biocompatible Materials/chemistry , Cell Differentiation , Cells, Cultured , Tissue Engineering
6.
Lasers Med Sci ; 39(1): 21, 2024 Jan 02.
Article in English | MEDLINE | ID: mdl-38165503

ABSTRACT

This in vitro experimental investigation aimed to evaluate the impact of the combined application of a nanofiber scaffold (NS), a polymeric catalyst primer (PCP) containing 10 mg/mL of heme peroxidase enzyme, and violet LED (LEDv) on the esthetic efficacy (EE), trans-amelodentinal cytotoxicity (TC), and procedural duration of conventional in-office bleaching therapy. To achieve this, 96 standardized enamel/dentin discs were individually placed in artificial pulp chambers. A 35% hydrogen peroxide (H2O2) bleaching gel was administered for 45, 30, or 15 min to the enamel, either previously coated with NS + PCP or left uncoated, followed by irradiation with LEDv for 15 min or no irradiation. The established groups were as follows: G1, negative control (no treatment); G2, 35% H2O2/45 min; G3, NS + PCP + LEDv; G4, NS + PCP + 35%H2O2/45 min + LEDv; G5, NS + PCP + 35%H2O2/30 min + LEDv; and G6, NS + PCP + 35%H2O2/15 min + LEDv. Extracts (culture medium + gel components diffused through the discs) were collected and applied to odontoblast-like MDPC-23 cells. EE (ΔE00 and ΔWI) and TC were assessed using ANOVA/Tukey analysis (p < 0.05). The EE analysis revealed no statistical differences between G6 and G2 (p > 0.05). Cells in G6 exhibited higher viability and lower oxidative stress compared to other bleached groups (p < 0.05). In conclusion, employing NS + PCP + LEDv to catalyze a 35%H2O2 bleaching gel applied for 15 min to the enamel resulted in successful esthetic improvements and reduced the cytotoxicity commonly linked with traditional in-office bleaching procedures.


Subject(s)
Hydrogen Peroxide , Polymers , Hydrogen Peroxide/pharmacology , Biopolymers , Catalysis , Culture Media
7.
Int Endod J ; 57(3): 315-327, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38108522

ABSTRACT

AIM: This study evaluated the transdentinal cytotoxic effects of enzymatic agents (EA) for chemomechanical carious tissue removal on human dental pulp cells. METHODOLOGY: The groups were based on the performed dentine treatments (n = 8): G1: Positive Control (PC - no treatment); G2: Negative Control (NC - 35% H2 O2 for 2 min); G3: Brix 3000™ (BX) for 30 s; G4: BX for 2 min; G5: Papacarie Duo™ (PD) for 30 s; G6: PD for 2 min. The cells were evaluated for viability (VB; MTT assay) and production of reactive oxygen species (ROS; DCFH-DA assay) and nitric oxide (NO; Griess reagent). A scanning electron microscope provided morphological chemical analyses and energy-dispersive X-ray spectroscopy. The data were submitted to the one-way anova statistical test complemented by Tukey (p < .05). RESULTS: Cell viability decreased by 21.1% and 58.4% in G5 and G6, respectively. ROS production in G3 and G4 maintained basal levels but increased by 171.2% and 75.1% in G5 and G6, respectively. CONCLUSIONS: The Brix3000™ enzymatic agent did not cause indirect cytotoxic effects on pulp cells, regardless of the application time. Conversely, Papacarie Duo™ reduced viability and increased ROS production by pulp cells.


Subject(s)
Dental Pulp , Oxidative Stress , Humans , Reactive Oxygen Species
8.
J Prosthet Dent ; 130(6): 939.e1-939.e8, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37867015

ABSTRACT

STATEMENT OF PROBLEM: Based upon ethical questions and because of the difficulty of obtaining intact human teeth, researchers have used bovine teeth to assess the physical and mechanical properties of different dental materials. However, data from transdentinal cytotoxicity tests showing that the bovine dentin barrier is similar to the human dentin barrier is lacking. PURPOSE: The purpose of this in vitro study was to evaluate whether the bovine dentin barrier produces similar results to those obtained when the human dentin barrier is used to assess the transdentinal cytotoxicity of resin luting cements. MATERIAL AND METHODS: The number and diameter of dentinal tubules present in the human dentin barrier and bovine dentin barrier were evaluated and assessed with a t test (α=.05). After inserting the standardized dentin barriers into artificial pulp chambers, murine dental papilla-derived cells (MDPC-23) were seeded on the pulpal surface of the specimens, and the luting cements were applied to their occlusal surfaces. Then, the following groups were established for both human and bovine dentin barriers: no treatment (negative control); Single Bond Universal; RelyX Luting 2; RelyX U200; and RelyX Ultimate. After 24 hours, the viability (alamarBlue) and morphology (scanning electron microscopy) of the cells were evaluated with a 2-way analysis of variance and the Tukey honest significance test (α=.05). RESULTS: Dentinal tubules with larger diameters were observed in bovine dentin (P<.05), but the number of tubules was similar (P>.05). A reduction in viability and notable changes in the morphology of MDPC-23 cells occurred in the Single Bond Universal and RelyX Luting 2 groups in comparison with the negative control (P<.05). The RelyX U200 and RelyX Ultimate groups were statistically similar to the negative control (P>.05). No difference was found in cytotoxicity when the same luting cement was applied on human or bovine dentin barriers (P>.05). CONCLUSIONS: For transdentinal cytotoxicity tests of resin luting cements, the bovine dentin barrier proved similar results to the human dentin barrier.


Subject(s)
Dental Bonding , Humans , Cattle , Animals , Mice , Dental Bonding/methods , Dentin , Resin Cements/toxicity , Resin Cements/chemistry , Dental Cements , Bisphenol A-Glycidyl Methacrylate/chemistry , Materials Testing , Dental Stress Analysis
9.
Clin Oral Investig ; 27(12): 7295-7306, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37853265

ABSTRACT

OBJECTIVES: To investigate the response of pulp cells to the application of silver diamine fluoride (SDF) and potassium iodide (KI) on demineralized dentin. MATERIALS AND METHODS: The occlusal surfaces of human dentin discs (0.4 mm thick) with similar permeability were subjected to an artificial caries protocol, and then the discs were adapted into artificial pulp chambers. MDPC-23 cells were seeded on the healthy pulp dentin surface, while the demineralized surface was treated with SDF, KI, SDF + KI, or hydrogen peroxide (positive control-PC) (n = 8). The negative control (NC) received ultrapure water. After 24 h, cell viability (alamarBlue) and morphology (SEM) were evaluated. The extracts were then applied to new MDPC-23 cells seeded in culture plates to assess their viability and the formation of mineralized nodules (MN; Alizarin Red) after seven days. The data were analyzed using one-way analysis of variance/Tukey or Games-Howell tests (α = 5%). RESULTS: SDF and PC significantly reduced the viability of cells seeded on discs (45.6% and 71.0%, respectively). Only cells treated with SDF or PC detached from the dentin substrate, while the remaining cells showed altered morphology. Cells in contact with extracts showed less reduction in viability, but it was still more toxic compared to NC. Only PC reduced MN deposition. SDF + KI or KI alone did not affect the cell response. CONCLUSIONS: SDF applied alone showed a mild to moderate transdentinal cytotoxic effect on pulp cells. However, the combination of SDF + KI reduced the cytotoxic effects. Both materials used alone or in combination did not affect the mineralization ability of pulp cells. CLINICAL RELEVANCE: Besides improving esthetic results, associating potassium iodide with silver diamine fluoride may reduce the transdentinal cytotoxic effects of this cariostatic agent on pulp cells.


Subject(s)
Dental Caries , Potassium Iodide , Humans , Potassium Iodide/pharmacology , Potassium Iodide/therapeutic use , Dental Pulp Cavity , Dental Caries Susceptibility , Dentin , Esthetics, Dental , Fluorides, Topical/pharmacology , Dental Caries/drug therapy , Quaternary Ammonium Compounds/pharmacology , Quaternary Ammonium Compounds/therapeutic use
10.
Biointerphases ; 18(4)2023 07 01.
Article in English | MEDLINE | ID: mdl-37523246

ABSTRACT

The repair and homeostasis of peri-implant tissues depend on several factors such as the local presence of pathogenic bacteria and their products. Among other events, peri-implant tissue response is also related to the implant material used, which interferes with cells and extracellular matrix interactions, affecting the osseointegration process. In this study, the influence of zirconia (Zr) and titanium (Ti) substrates on the response of preosteoblasts (MC3T3) and murine macrophages (RAW 264.7) exposed to lipopolysaccharide (LPS, P. gingivalis) was evaluated. Zr and Ti disks were obtained and subjected to surface roughness standardization, which was analyzed by scanning electronic microscopy (SEM). The cells were subsequently cultured on Zr and Ti surfaces in AlphaMEM culture medium for 24 h, followed by LPS stimulus for 4 h. The production of reactive oxygen species (ROS) and gene expression of inflammatory markers were determined. SEM images showed that Ti disks exhibited higher surface roughness than that of Zr disks. Cells that seeded onto Ti and Zr had increased expression of inflammatory mediators and ROS production in the presence of LPS; however, such cell responses were more evident for Ti disks. These data indicate that contact of cells with Zr surfaces may lead to a lower inflammatory potential than Ti surfaces. Elucidation of the inflammatory response triggered by LPS for cells in contact with titanium and zirconia may contribute to the selection of materials for installation of osseointegrated implants.


Subject(s)
Dental Implants , Titanium , Animals , Mice , Lipopolysaccharides , Reactive Oxygen Species , Zirconium , Surface Properties
11.
J Appl Oral Sci ; 31: e20230032, 2023.
Article in English | MEDLINE | ID: mdl-37493701

ABSTRACT

BACKGROUND: Simulating a bacterial-induced pulpitis environment in vitro may contribute to exploring mechanisms and bioactive molecules to counteract these adverse effects. OBJECTIVE: To investigate the chronic exposure of human dental pulp cells (HDPCs) to lipopolysaccharides (LPS) aiming to establish a cell culture protocol to simulate the impaired odontogenic potential under pulpitis conditions. METHODOLOGY: HDPCs were isolated from four healthy molars of different donors and seeded in culture plates in a growth medium. After 24 h, the medium was changed to an odontogenic differentiation medium (DM) supplemented or not with E. coli LPS (0 - control, 0.1, 1, or 10 µg/mL) (n=8). The medium was renewed every two days for up to seven days, then replaced with LPS-free DM for up to 21 days. The activation of NF-κB and F-actin expression were assessed (immunofluorescence) after one and seven days. On day 7, cells were evaluated for both the gene expression (RT-qPCR) of odontogenic markers (COL1A1, ALPL, DSPP, and DMP1) and cytokines (TNF, IL1B, IL8, and IL6) and the production of reactive nitrogen (Griess) and oxygen species (Carboxy-H2DCFDA). Cell viability (alamarBlue) was evaluated weekly, and mineralization was assessed (Alizarin Red) at 14 and 21 days. Data were analyzed with ANOVA and post-hoc tests (α=5%). RESULTS: After one and seven days of exposure to LPS, NF-κB was activated in a dose-dependent fashion. LPS at 1 and 10 µg/mL concentrations down-regulated the gene expression of odontogenic markers and up-regulated cytokines. LPS at 10 µg/mL increased both the production of reactive nitrogen and oxygen species. LPS decreased cell viability seven days after the end of exposure. LPS at 1 and 10 µg/mL decreased hDPCs mineralization in a dose-dependent fashion. CONCLUSION: The exposure to 10 µg/mL LPS for seven days creates an inflammatory environment that is able to impair by more than half the odontogenic potential of HDPCs in vitro, simulating a pulpitis-like condition.


Subject(s)
Pulpitis , Humans , Pulpitis/metabolism , NF-kappa B , Dental Pulp , Lipopolysaccharides/pharmacology , Lipopolysaccharides/metabolism , Escherichia coli/metabolism , Cell Differentiation , Cytokines/metabolism , Cells, Cultured
12.
Restor Dent Endod ; 48(2): e12, 2023 May.
Article in English | MEDLINE | ID: mdl-37284347

ABSTRACT

Objectives: The present study evaluated the pulp response of human mandibular incisors subjected to in-office dental bleaching using gels with medium or high concentrations of hydrogen peroxide (HP). Materials and Methods: The following groups were compared: 35% HP (HP35; n = 5) or 20% HP (HP20; n = 4). In the control group (CONT; n = 2), no dental bleaching was performed. The color change (CC) was registered at baseline and after 2 days using the Vita Classical shade guide. Tooth sensitivity (TS) was also recorded for 2 days post-bleaching. The teeth were extracted 2 days after the clinical procedure and subjected to histological analysis. The CC and overall scores for histological evaluation were evaluated by the Kruskal-Wallis and Mann-Whitney tests. The percentage of patients with TS was evaluated by the Fisher exact test (α = 0.05). Results: The CC and TS of the HP35 group were significantly higher than those of the CONT group (p < 0.05) and the HP20 group showed an intermediate response, without significant differences from either the HP35 or CONT group (p > 0.05). In both experimental groups, the coronal pulp tissue exhibited partial necrosis associated with tertiary dentin deposition. Overall, the subjacent pulp tissue exhibited a mild inflammatory response. Conclusions: In-office bleaching therapies using bleaching gels with 20% or 35% HP caused similar pulp damage to the mandibular incisors, characterized by partial necrosis, tertiary dentin deposition, and mild inflammation.

13.
J Periodontal Res ; 58(4): 791-799, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37226366

ABSTRACT

OBJECTIVE: This study assessed the metabolism of oral mucosal cells cultured on titanium discs (Ti) coated (or not) with epidermal growth factor (EGF) and exposed to tumor necrosis factor alpha (TNF-α). METHODS: Fibroblasts or keratinocytes were seeded on Ti coated or not with EGF, and then exposed to 100 ng/mL of TNF-α for 24 h. Groups were established: G1: Ti (control); G2: Ti + TNF-α; G3: Ti + EGF; and G4: Ti + EGF + TNF-α. Both cell lines were evaluated for: viability (AlamarBlue®, n = 8); interleukin 6 and 8 (IL-6, IL-8) gene expression (qPCR, n = 5), and protein synthesis (ELISA, n = 6). For keratinocytes cells, the matrix metalloproteinase type 3 (MMP-3) was evaluated by qPCR (n = 5) and ELISA (n = 6). A 3-D culture of fibroblasts was analyzed by confocal microscopy. The data were subjected to ANOVA analysis, α = 5%. RESULTS: Increased cell viability was observed in all groups compared with G1. Enhanced gene expression and synthesis of IL-6 and IL-8 by fibroblasts and keratinocytes in G2 and modulation of hIL-6 gene expression in G4 was noted. Modulation of IL-8 synthesis occurred in keratinocytes in G3 and G4. Keratinocytes in G2 showed enhanced gene expression of hMMP-3. A 3-D culture showed more cells in G3. Fibroblasts in G2 exhibited disrupted cytoplasmic membrane. Cells in G4 showed elongated morphology with intact cytoplasm. CONCLUSIONS: EGF coating increases cell viability and modulates the response of oral cells exposed to an inflammatory stimulus.


Subject(s)
Cytokines , Epidermal Growth Factor , Epidermal Growth Factor/pharmacology , Tumor Necrosis Factor-alpha/pharmacology , Titanium/pharmacology , Interleukin-6 , Interleukin-8 , Cells, Cultured , Fibroblasts
14.
Arch Oral Biol ; 151: 105703, 2023 Jul.
Article in English | MEDLINE | ID: mdl-37146390

ABSTRACT

OBJECTIVE: To assess the effects of pre-treatment with proanthocyanidins (PA) flavonoids, from grape seed extract, and synthetic naringenin (NA) on the synthesis of matrix metalloproteinases (MMPs) gelatinases and their tissue inhibitors (TIMPs), as well as the gelatinolytic activity of MMPs by human gingival fibroblasts (HGF) and osteoblasts (Ob) exposed to zoledronic acid (ZA) in a dental implant surface in vitro model. DESIGN: The highest non-cytotoxic concentrations of NA and PA were determined for HGF (10 µg/mL; defined by previous study) and Ob (0.5 µg/mL; defined by prestoBlue assay). Then, HFG and Ob were individually seeded onto titanium discs, and after 24 h, cells were pre-treated (or not) with NA or PA, followed (or not) by exposure to ZA. Next, MMP-2, MMP-9, TIMP-1, TIMP-2 synthesis (ELISA), and gelatinolytic activity (in situ zymography) was evaluated. Data were analyzed by one-way ANOVA and Tukey tests (α = 0.05). RESULTS: ZA treatment increased the synthesis (p < 0.05) and activity of MMPs; flavonoids pre-treatment controlled ZA-induced gelatinolytic effects, down-regulating MMPs synthesis (p < 0.05) and activity by HGF and Ob. For HGF, NA and PA pre-treatment did not up-regulate TIMP synthesis after ZA exposure (p > 0.05); for Ob, TIMP-2 was up-regulated (p < 0.05) by flavonoids, followed by ZA. CONCLUSIONS: NA and PA pre-treatment provides interesting results in the modulation of ZA deleterious effects, down-regulating MMP-2 and MMP-9 synthesis and activity by HGF and Ob and up-regulating TIMP-2 by Ob.


Subject(s)
Dental Implants , Proanthocyanidins , Humans , Gelatinases , Tissue Inhibitor of Metalloproteinase-2 , Matrix Metalloproteinase 9 , Matrix Metalloproteinase 2 , Zoledronic Acid/pharmacology , Proanthocyanidins/pharmacology , Matrix Metalloproteinases , Tissue Inhibitor of Metalloproteinases
15.
J Funct Biomater ; 14(4)2023 Apr 16.
Article in English | MEDLINE | ID: mdl-37103314

ABSTRACT

Titanium surface modifications are widely used to modulate cellular behavior by recognition of topographical cues. However, how those modifications affect the expression of mediators that will influence neighboring cells is still elusive. This study aimed to evaluate the effects of conditioned media from osteoblasts cultured on laser-modified titanium surfaces on the differentiation of bone marrow cells in a paracrine manner and to analyze the expression of Wnt pathway inhibitors. Mice calvarial osteoblasts were seeded on polished (P) and Yb:YAG laser-irradiated (L) Ti surfaces. Osteoblast culture media were collected and filtered on alternate days to stimulate mice BMCs. Resazurin assay was performed every other day for 20 days to check BMC viability and proliferation. After 7 and 14 days of BMCs maintained with osteoblasts P and L-conditioned media, alkaline phosphatase activity, Alizarin Red staining, and RT-qPCR were performed. ELISA of conditioned media was conducted to investigate the expression of Wnt inhibitors Dickkopf-1 (DKK1) and Sclerostin (SOST). BMCs showed increased mineralized nodule formation and alkaline phosphatase activity. The L-conditioned media enhanced the BMC mRNA expression of bone-related markers Bglap, Alpl, and Sp7. L-conditioned media decreased the expression of DKK1 compared with P-conditioned media. The contact of osteoblasts with Yb:YAG laser-modified Ti surfaces induces the regulation of the expression of mediators that affect the osteoblastic differentiation of neighboring cells. DKK1 is among these regulated mediators.

16.
Braz Oral Res ; 37: e018, 2023.
Article in English | MEDLINE | ID: mdl-36790259

ABSTRACT

This study evaluated the bioactive potential of a macro-porous chitosan scaffold incorporated with calcium hydroxide (CH-Ca) and functionalized with bioactive doses of simvastatin (SV) for bone tissue regeneration. Initially, the bioactive dose of SV in osteoblastic cells (SAOS-2) was determined. For the direct contact experiment, SAOS-2 cells were plated on scaffolds to assess cell viability and osteogenic differentiation. The second assay was performed at a distance using extracts from scaffolds incubated in culture medium to assess the effect of conditioned medium on viability and osteogenic differentiation. The initial screening showed that 1 µM SV presented the best biostimulating effects, and this dose was selected for incorporation into the CH-Ca and pure chitosan (CH) scaffolds. The cells remained viable throughout the direct contact experiment, with the greatest cell density in the CH-Ca and CH-Ca-SV scaffolds because of their higher porosity. The CH-Ca-SV scaffold showed the most intense bio-stimulating effect in assays in the presence and absence of osteogenic medium, leading to an increased deposition of mineralized matrix. There was an increase in the viability of cells exposed to the extracts for CH-Ca, CH-SV, and CH-Ca-SV during the one-day period. There was an increase in ALP activity in the CH-Ca and CH-Ca-SV; however, the CH-Ca-SV scaffold resulted in an intense increase in the deposition of mineralized nodules, approximately 56.4% at 7 days and 117% at 14 days, compared with CH (control). In conclusion, functionalization of the CH-Ca scaffold with SV promoted an increase in bioactivity, presenting a promising option for bone tissue regeneration.


Subject(s)
Chitosan , Chitosan/pharmacology , Calcium , Tissue Scaffolds , Porosity , Osteogenesis , Simvastatin/pharmacology , Calcium Hydroxide/pharmacology , Cell Differentiation , Tissue Engineering/methods
17.
J. appl. oral sci ; 31: e20230032, 2023. graf
Article in English | LILACS-Express | LILACS | ID: biblio-1448548

ABSTRACT

Abstract Simulating a bacterial-induced pulpitis environment in vitro may contribute to exploring mechanisms and bioactive molecules to counteract these adverse effects. Objective To investigate the chronic exposure of human dental pulp cells (HDPCs) to lipopolysaccharides (LPS) aiming to establish a cell culture protocol to simulate the impaired odontogenic potential under pulpitis conditions. Methodology HDPCs were isolated from four healthy molars of different donors and seeded in culture plates in a growth medium. After 24 h, the medium was changed to an odontogenic differentiation medium (DM) supplemented or not with E. coli LPS (0 - control, 0.1, 1, or 10 µg/mL) (n=8). The medium was renewed every two days for up to seven days, then replaced with LPS-free DM for up to 21 days. The activation of NF-κB and F-actin expression were assessed (immunofluorescence) after one and seven days. On day 7, cells were evaluated for both the gene expression (RT-qPCR) of odontogenic markers (COL1A1, ALPL, DSPP, and DMP1) and cytokines (TNF, IL1B, IL8, and IL6) and the production of reactive nitrogen (Griess) and oxygen species (Carboxy-H2DCFDA). Cell viability (alamarBlue) was evaluated weekly, and mineralization was assessed (Alizarin Red) at 14 and 21 days. Data were analyzed with ANOVA and post-hoc tests (α=5%). Results After one and seven days of exposure to LPS, NF-κB was activated in a dose-dependent fashion. LPS at 1 and 10 µg/mL concentrations down-regulated the gene expression of odontogenic markers and up-regulated cytokines. LPS at 10 µg/mL increased both the production of reactive nitrogen and oxygen species. LPS decreased cell viability seven days after the end of exposure. LPS at 1 and 10 µg/mL decreased hDPCs mineralization in a dose-dependent fashion. Conclusion The exposure to 10 µg/mL LPS for seven days creates an inflammatory environment that is able to impair by more than half the odontogenic potential of HDPCs in vitro, simulating a pulpitis-like condition.

18.
Braz. oral res. (Online) ; 37: e018, 2023. graf
Article in English | LILACS-Express | LILACS, BBO - Dentistry | ID: biblio-1420956

ABSTRACT

Abstract This study evaluated the bioactive potential of a macro-porous chitosan scaffold incorporated with calcium hydroxide (CH-Ca) and functionalized with bioactive doses of simvastatin (SV) for bone tissue regeneration. Initially, the bioactive dose of SV in osteoblastic cells (SAOS-2) was determined. For the direct contact experiment, SAOS-2 cells were plated on scaffolds to assess cell viability and osteogenic differentiation. The second assay was performed at a distance using extracts from scaffolds incubated in culture medium to assess the effect of conditioned medium on viability and osteogenic differentiation. The initial screening showed that 1 μM SV presented the best biostimulating effects, and this dose was selected for incorporation into the CH-Ca and pure chitosan (CH) scaffolds. The cells remained viable throughout the direct contact experiment, with the greatest cell density in the CH-Ca and CH-Ca-SV scaffolds because of their higher porosity. The CH-Ca-SV scaffold showed the most intense bio-stimulating effect in assays in the presence and absence of osteogenic medium, leading to an increased deposition of mineralized matrix. There was an increase in the viability of cells exposed to the extracts for CH-Ca, CH-SV, and CH-Ca-SV during the one-day period. There was an increase in ALP activity in the CH-Ca and CH-Ca-SV; however, the CH-Ca-SV scaffold resulted in an intense increase in the deposition of mineralized nodules, approximately 56.4% at 7 days and 117% at 14 days, compared with CH (control). In conclusion, functionalization of the CH-Ca scaffold with SV promoted an increase in bioactivity, presenting a promising option for bone tissue regeneration.

19.
Lasers Med Sci ; 38(1): 2, 2022 Dec 19.
Article in English | MEDLINE | ID: mdl-36534293

ABSTRACT

Gels with high concentrations of hydrogen peroxide (H2O2) have been associated with cytotoxicity and consequent post-bleaching tooth sensitivity. This study assessed the bleaching efficacy (BE) and cytotoxicity (CT) of bleaching gels with low concentrations of H2O2 containing manganese oxide (MnO2) and photocatalyzed with violet LED (LEDv). The following groups were established: G1: no treatment (negative control, NC); G2: 35% H2O2 (positive control, PC); G3: LEDv; G4: 10% H2O2; G5: 6% H2O2; G6: 10% H2O2 + MnO2 + LEDv; G7: 6% H2O2 + MnO2 + LEDv. To analyze BE, standardized enamel/dentin discs (E/DDs) were subjected to the bleaching procedures for 45 min (1 session). The color change was determined before and after performing the bleaching protocols (ΔE00; ΔWI). To analyze CT, the E/DDs were adapted to artificial pulp chambers, and the extracts (culture medium + diffused gel components) were applied to cultured odontoblast-like MDPC-23 cells. Then, the cells were assessed concerning their viability (VB), oxidative stress (OxS), and Live/Dead. The amount of H2O2 diffused was also determined (ANOVA/Tukey; p < 0.05). Cell viability decreased in all bleached groups compared to G1 (NC; p < 0.05). The cells in G6 and G7 presented higher viability than in G2, G4, and G5 (p < 0.05). The BE in G7 was similar to G2 (PC; p < 0.05). The lowest OxS and H2O2 diffusion values were found in G6 and G7, compared to the other bleached groups (G2, G4, and G5; p < 0.05). The 6% H2O2 bleaching gel (G7) submitted to both methods of catalysis (MnO2 + LEDv) caused only a mild cytotoxicity and maintained the excellent esthetic outcome promoted by in-office conventional tooth bleaching.


Subject(s)
Tooth Bleaching Agents , Tooth Bleaching , Hydrogen Peroxide , Manganese Compounds , Oxides , Tooth Bleaching/methods , Gels
20.
Dent Mater ; 38(11): 1763-1776, 2022 11.
Article in English | MEDLINE | ID: mdl-36182549

ABSTRACT

OBJECTIVES: This study aimed to develop and characterize different formulations of porous chitosan scaffolds (SCH) associated with calcium silicate (CaSi) and evaluate their chemotactic and bioactive potential on human dental pulp cells (hDPCs). METHODS: Different concentrations of CaSi suspensions (0.5%, 1.0%, and 2.0%, w/v) were incorporated (1:5; v/v) /or not, into 2% chitosan solution, giving rise to the following groups: SCH (control); SCH+ 0.5CaSi; SCH+ 1.0CaSi; SCH+ 2.0 CaSi. The resulting solutions were submitted to thermally induced phase separation followed by freeze-drying procedures to obtain porous scaffolds. The topography, pH, and calcium release kinetics of the scaffolds were assessed. Next, the study evaluated the influence of these scaffolds on cell migration (MG), viability (VB), proliferation (PL), adhesion and spreading (A&S), and on total protein synthesis (TP), alkaline phosphatase (ALP) activity, mineralized matrix deposition (MMD), and gene expression (GE) of odontogenic differentiation markers (ALP, DSPP, and DMP-1). The data were analyzed with ANOVA complemented with the Tukey post-hoc test (α = 5%). RESULTS: Incorporation of the CaSi suspension into the chitosan scaffold formulation increased pore diameter when compared with control. Increased amounts of CaSi in the CH scaffold resulted in higher pH values and Ca release. In Groups SCH+ 1.0CaSi and SCH+ 2.0CaSi, increased VB, PF, A&S, GE of DSPP/DMP-1 and MMD values were shown. However, Group SCH+ 2.0CaSi was the only formulation capable of enhancing MG and showed the highest increase in TP, MMD, and GE of DMP-1 and DSPP values. SIGNIFICANCE: SCH+ 2.0CaSi formulation had the highest chemotactic and bioactive potential on hDPCs and may be considered a potential biomaterial for pulp-dentin complex regeneration.


Subject(s)
Chitosan , Alkaline Phosphatase/metabolism , Biocompatible Materials/chemistry , Calcium , Calcium Compounds , Cell Differentiation , Cell Proliferation , Chitosan/pharmacology , Dental Pulp , Dental Pulp Capping , Humans , Porosity , Silicates , Tissue Engineering , Tissue Scaffolds/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...