Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Rep ; 14(1): 11721, 2024 05 22.
Article in English | MEDLINE | ID: mdl-38777823

ABSTRACT

It has recently been shown that KAT8, a genome-wide association study candidate risk gene for Parkinson's Disease, is involved in PINK1/Parkin-dependant mitophagy. The KAT8 gene encodes a lysine acetyltransferase and represents the catalytically active subunit of the non-specific lethal epigenetic remodelling complex. In the current study, we show that contrary to KAT5 inhibition, dual inhibition of KAT5 and KAT8 via the MG149 compound inhibits the initial steps of the PINK1-dependant mitophagy process. More specifically, our study shows that following mitochondrial depolarisation induced by mitochondrial toxins, MG149 treatment inhibits PINK1-dependant mitophagy initiation by impairing PINK1 activation, and subsequent phosphorylation of Parkin and ubiquitin. While this inhibitory effect of MG149 on PINK1-activation is potent, MG149 treatment in the absence of mitochondrial toxins is sufficient to depolarise the mitochondrial membrane, recruit PINK1 and promote partial downstream recruitment of the autophagy receptor p62, leading to an increase in mitochondrial delivery to the lysosomes. Altogether, our study provides additional support for KAT8 as a regulator of mitophagy and autophagy processes.


Subject(s)
Mitochondria , Mitophagy , Protein Kinases , Ubiquitin-Protein Ligases , Mitophagy/drug effects , Humans , Protein Kinases/metabolism , Protein Kinases/genetics , Ubiquitin-Protein Ligases/metabolism , Ubiquitin-Protein Ligases/genetics , Mitochondria/metabolism , Mitochondria/drug effects , Histone Acetyltransferases/metabolism , Histone Acetyltransferases/antagonists & inhibitors , Phosphorylation/drug effects , Membrane Potential, Mitochondrial/drug effects , HeLa Cells
SELECTION OF CITATIONS
SEARCH DETAIL
...