Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Antioxidants (Basel) ; 12(5)2023 Apr 26.
Article in English | MEDLINE | ID: mdl-37237871

ABSTRACT

5-Fluorouracil (5-FU) is a chemotherapy drug widely used to treat a range of cancer types, despite the recurrence of adverse reactions. Therefore, information on its side effects when administered at a clinically recommended dose is relevant. On this basis, we examined the effects of the 5-FU clinical treatment on the integrity of the liver, kidneys, and lungs of rats. For this purpose, 14 male Wistar rats were divided into treated and control groups and 5-FU was administered at 15 mg/kg (4 consecutive days), 6 mg/kg (4 alternate days), and 15 mg/kg on the 14th day. On the 15th day, blood, liver, kidney, and lung samples were collected for histological, oxidative stress, and inflammatory evaluations. We observed a reduction in the antioxidant markers and an increase in lipid hydroperoxides (LOOH) in the liver of treated animals. We also detected elevated levels of inflammatory markers, histological lesions, apoptotic cells, and aspartate aminotransferase. Clinical treatment with 5-FU did not promote inflammatory or oxidative alterations in the kidney samples; however, histological and biochemical changes were observed, including increased serum urea and uric acid. 5-FU reduces endogenous antioxidant defenses and increases LOOH levels in the lungs, suggesting oxidative stress. Inflammation and histopathological alterations were also detected. The clinical protocol of 5-FU promotes toxicity in the liver, kidneys, and lungs of healthy rats, resulting in different levels of histological and biochemical alterations. These results will be useful in the search for new adjuvants to attenuate the adverse effects of 5-FU in such organs.

2.
Front Chem ; 10: 836478, 2022.
Article in English | MEDLINE | ID: mdl-35464220

ABSTRACT

Cardiovascular diseases (CVDs) are noncommunicable diseases known for their complex etiology and high mortality rate. Oxidative stress (OS), a condition in which the release of free radical exceeds endogenous antioxidant capacity, is pivotal in CVC, such as myocardial infarction, ischemia/reperfusion, and heart failure. Due to the lack of information about the implications of OS on cardiovascular conditions, several methodologies have been applied to investigate the causes and consequences, and to find new ways of diagnosis and treatment as well. In the present study, cardiac dysfunction was evaluated by analyzing cells' alterations with untargeted metabolomics, after simulation of an oxidative stress condition using hydrogen peroxide (H2O2) in H9c2 myocytes. Optimizations of H2O2 concentration, cell exposure, and cell recovery times were performed through MTT assays. Intracellular metabolites were analyzed right after the oxidative stress (oxidative stress group) and after 48 h of cell recovery (recovery group) by ultra-high-performance liquid chromatography coupled to mass spectrometry (UHPLC-MS) in positive and negative ESI ionization mode. Significant alterations were found in pathways such as "alanine, aspartate and glutamate metabolism", "glycolysis", and "glutathione metabolism", mostly with increased metabolites (upregulated). Furthermore, our results indicated that the LC-MS method is effective for studying metabolism in cardiomyocytes and generated excellent fit (R2Y > 0.987) and predictability (Q2 > 0.84) values.

3.
Mem Inst Oswaldo Cruz ; 106(2): 158-65, 2011 Mar.
Article in English | MEDLINE | ID: mdl-21537674

ABSTRACT

Semiconductor nanoparticles, such as quantum dots (QDs), were used to carry out experiments in vivo and ex vivo with Trypanosoma cruzi. However, questions have been raised regarding the nanotoxicity of QDs in living cells, microorganisms, tissues and whole animals. The objective of this paper was to conduct a QD nanotoxicity study on living T. cruzi protozoa using analytical methods. This was accomplished using in vitro experiments to test the interference of the QDs on parasite development, morphology and viability. Our results show that after 72 h, a 200 µM cadmium telluride (CdTe) QD solution induced important morphological alterations in T. cruzi, such as DNA damage, plasma membrane blebbing and mitochondrial swelling. Flow cytometry assays showed no damage to the plasma membrane when incubated with 200 µM CdTe QDs for up to 72 h (propidium iodide cells), giving no evidence of classical necrosis. Parasites incubated with 2 µM CdTe QDs still proliferated after seven days. In summary, a low concentration of CdTe QDs (2 µM) is optimal for bioimaging, whereas a high concentration (200 µM CdTe) could be toxic to cells. Taken together, our data indicate that 2 µM QD can be used for the successful long-term study of the parasite-vector interaction in real time.


Subject(s)
Cadmium Compounds/toxicity , Cell Proliferation/drug effects , DNA Damage/drug effects , Quantum Dots , Tellurium/toxicity , Trypanosoma cruzi/drug effects , Animals , Cell Membrane/drug effects , Flow Cytometry , Fluorescent Dyes , Mice , Microscopy, Electron, Transmission , Mitochondrial Swelling , Trypanosoma cruzi/ultrastructure
SELECTION OF CITATIONS
SEARCH DETAIL
...