Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
Respir Physiol Neurobiol ; 287: 103620, 2021 05.
Article in English | MEDLINE | ID: mdl-33515749

ABSTRACT

In 15 pulmonary arterial hypertension patients, the relation of functional capacity to their peripheral endothelial function and sympathaovagal modulation was studied by carrying out brachial artery ultrasound and electrocardiogram spectral analysis, respectively. The functional capacity was assessed by cardiopulmonary exercise testing and six-minute walking test. The sympathovagal modulation was correlated with the predicted peak oxygen consumption (peak VO2 %; r = 0.692, P < 0.05), peak O2 pulse (mL/beat; r = 0.661, P < 0.05), VE, minute ventilation, VCO2 carbon dioxide production (VE/VCO2 slope; r=-0.806, P < 0.01) and distance walked predicted (%6MWT; r = 0.694, P < 0.05). Moreover, there were negative correlations between parasympathetic modulation with peak VO2 (r = 0.755, P < 0.01), peak VO2% (r=-0.727, P < 0.01) and peak O2 pulse (r = 0.615, P < 0.05), %6MWT (r=-0.834, P < 0.01). Collectively these correlations indicate that parasympathetic withdrawal is crucial for improving functional capacity. This conclusion is supported by both positive and negative correlations of parasympathetic modulation with the functional capacity parameters. The sympathetic modulation predominance, although increases the cardiovascular risk, is probably crucial to facilitate the bronchodilation and the oxygen uptake.


Subject(s)
Parasympathetic Nervous System/physiopathology , Pulmonary Arterial Hypertension/physiopathology , Sympathetic Nervous System/physiopathology , Adult , Electrocardiography , Exercise Test , Female , Heart Failure/physiopathology , Humans , Male , Middle Aged
SELECTION OF CITATIONS
SEARCH DETAIL
...