Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 45
Filter
Add more filters










Publication year range
1.
J Neuroinflammation ; 21(1): 121, 2024 May 08.
Article in English | MEDLINE | ID: mdl-38720368

ABSTRACT

BACKGROUND: Umbilical cord blood (UCB) cells are a promising treatment for preterm brain injury. Access to allogeneic sources of UCB cells offer the potential for early administration to optimise their therapeutic capacities. As preterm infants often require ventilatory support, which can contribute to preterm brain injury, we investigated the efficacy of early UCB cell administration following ventilation to reduce white matter inflammation and injury. METHODS: Preterm fetal sheep (0.85 gestation) were randomly allocated to no ventilation (SHAM; n = 5) or 15 min ex utero high tidal volume ventilation. One hour following ventilation, fetuses were randomly allocated to i.v. administration of saline (VENT; n = 7) or allogeneic term-derived UCB cells (24.5 ± 5.0 million cells/kg; VENT + UCB; n = 7). Twenty-four hours after ventilation, lambs were delivered for magnetic resonance imaging and post-mortem brain tissue collected. Arterial plasma was collected throughout the experiment for cytokine analyses. To further investigate the results from the in vivo study, mononuclear cells (MNCs) isolated from human UCB were subjected to in vitro cytokine-spiked culture medium (TNFα and/or IFNγ; 10 ng/mL; n = 3/group) for 16 h then supernatant and cells collected for protein and mRNA assessments respectively. RESULTS: In VENT + UCB lambs, systemic IFNγ levels increased and by 24 h, there was white matter neuroglial activation, vascular damage, reduced oligodendrocytes, and increased average, radial and mean diffusivity compared to VENT and SHAM. No evidence of white matter inflammation or injury was present in VENT lambs, except for mRNA downregulation of OCLN and CLDN1 compared to SHAM. In vitro, MNCs subjected to TNFα and/or IFNγ displayed both pro- and anti-inflammatory characteristics indicated by changes in cytokine (IL-18 & IL-10) and growth factor (BDNF & VEGF) gene and protein expression compared to controls. CONCLUSIONS: UCB cells administered early after brief high tidal volume ventilation in preterm fetal sheep causes white matter injury, and the mechanisms underlying these changes are likely dysregulated responses of the UCB cells to the degree of injury/inflammation already present. If immunomodulatory therapies such as UCB cells are to become a therapeutic strategy for preterm brain injury, especially after ventilation, our study suggests that the inflammatory state of the preterm infant should be considered when timing UCB cells administration.


Subject(s)
Tidal Volume , Animals , Sheep , Female , Humans , Tidal Volume/physiology , Fetal Blood/cytology , Pregnancy , Cytokines/metabolism , Cord Blood Stem Cell Transplantation/methods , Respiration, Artificial/methods , Respiration, Artificial/adverse effects , Animals, Newborn
2.
Br J Pharmacol ; 2024 May 06.
Article in English | MEDLINE | ID: mdl-38710660

ABSTRACT

BACKGROUND AND PURPOSE: Traumatic brain injury (TBI) remains a major public health concern worldwide with unmet effective treatment. Stimulator of interferon genes (STING) and its downstream type-I interferon (IFN) signalling are now appreciated to be involved in TBI pathogenesis. Compelling evidence have shown that STING and type-I IFNs are key in mediating the detrimental neuroinflammatory response after TBI. Therefore, pharmacological inhibition of STING presents a viable therapeutic opportunity in combating the detrimental neuroinflammatory response after TBI. EXPERIMENTAL APPROACH: This study investigated the neuroprotective effects of the small-molecule STING inhibitor n-(4-iodophenyl)-5-nitrofuran-2-carboxamide (C-176) in the controlled cortical impact mouse model of TBI in 10- to 12-week-old male mice. Thirty minutes post-controlled cortical impact surgery, a single 750-nmol dose of C-176 or saline (vehicle) was administered intravenously. Analysis was conducted 2 h and 24 h post-TBI. KEY RESULTS: Mice administered C-176 had significantly smaller cortical lesion area when compared to vehicle-treated mice 24 h post-TBI. Quantitative temporal gait analysis conducted using DigiGait™ showed C-176 administration attenuated TBI-induced impairments in gait symmetry, stride frequency and forelimb stance width. C-176-treated mice displayed a significant reduction in striatal gene expression of pro-inflammatory cytokines Tnf-α, Il-1ß and Cxcl10 compared to their vehicle-treated counterparts 2 h post-TBI. CONCLUSION AND IMPLICATIONS: This study demonstrates the neuroprotective activity of C-176 in ameliorating acute neuroinflammation and preventing white matter neurodegeneration post-TBI. This study highlights the therapeutic potential of small-molecule inhibitors targeting STING for the treatment of trauma-induced inflammation and neuroprotective potential.

3.
J Am Heart Assoc ; 13(3): e033279, 2024 Feb 06.
Article in English | MEDLINE | ID: mdl-38258657

ABSTRACT

BACKGROUND: Gut dysmotility is common after ischemic stroke, but the mechanism underlying this response is unknown. Under homeostasis, gut motility is regulated by the neurons of the enteric nervous system that control contractile/relaxation activity of muscle cells in the gut wall. More recently, studies of gut inflammation revealed interactions of macrophages with enteric neurons are also involved in modulating gut motility. However, whether poststroke gut dysmotility is mediated by direct signaling to the enteric nervous system or indirectly via inflammatory macrophages is unknown. METHODS AND RESULTS: We examined these hypotheses by using a clinically relevant permanent intraluminal midcerebral artery occlusion experimental model of stroke. At 24 hours after stroke, we performed in vivo and ex vivo gut motility assays, flow cytometry, immunofluorescence, and transcriptomic analysis. Stroke-induced gut dysmotility was associated with recruitment of muscularis macrophages into the gastrointestinal tract and redistribution of muscularis macrophages away from myenteric ganglia. The permanent intraluminal midcerebral artery occlusion model caused changes in gene expression in muscularis macrophages consistent with an altered phenotype. While the size of myenteric ganglia after stroke was not altered, myenteric neurons from post-permanent intraluminal midcerebral artery occlusion mice showed a reduction in neuronal nitric oxide synthase expression, and this response was associated with enhanced intestinal smooth muscle contraction ex vivo. Finally, chemical sympathectomy with 6-hydroxydopamine prevented the loss of myenteric neuronal nitric oxide synthase expression and stroke-induced slowed gut transit. CONCLUSIONS: Our findings demonstrate that activation of the sympathetic nervous system after stroke is associated with reduced neuronal nitric oxide synthase expression in myenteric neurons, resulting in impaired smooth muscle relaxation and dysregulation of gut transit.


Subject(s)
Enteric Nervous System , Stroke , Mice , Animals , Nitric Oxide Synthase Type I/genetics , Nitric Oxide Synthase Type I/metabolism , Enteric Nervous System/metabolism , Neurons/physiology , Muscle Relaxation , Stroke/metabolism
4.
Biol Psychiatry Glob Open Sci ; 3(4): 1053-1061, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37881541

ABSTRACT

Background: Disrupted motivational control is a common-but poorly treated-feature of psychiatric disorders, arising via aberrant mesolimbic dopaminergic signaling. GPR88 is an orphan G protein-coupled receptor that is highly expressed in the striatum and therefore well placed to modulate disrupted signaling. While the phenotype of Gpr88 knockout mice suggests a role in motivational pathways, it is unclear whether GPR88 is involved in reward valuation and/or effort-based decision making in a sex-dependent manner and whether this involves altered dopamine function. Methods: In male and female Gpr88 knockout mice, we used touchscreen-based progressive ratio, with and without reward devaluation, and effort-related choice tasks to assess motivation and cost/benefit decision making, respectively. To explore whether these motivational behaviors were related to alterations in the striatal dopamine system, we quantified expression of dopamine-related genes and/or proteins and used [18F]DOPA positron emission tomography and GTPγ[35S] binding to assess presynaptic and postsynaptic dopamine function, respectively. Results: We showed that male and female Gpr88 knockout mice displayed greater motivational drive than wild-type mice, which was maintained following reward devaluation. Furthermore, we showed that cost/benefit decision making was impaired in male, but not female, Gpr88 knockout mice. Surprisingly, we found that Gpr88 deletion had no effect on striatal dopamine by any of the measures assessed. Conclusions: Our results highlight that GPR88 regulates motivational control but that disruption of such behaviors following Gpr88 deletion occurs independently of gross perturbations to striatal dopamine at a gene, protein, or functional level. This work provides further insights into GPR88 as a drug target for motivational disorders.

5.
Inorg Chem ; 62(50): 20791-20805, 2023 Dec 18.
Article in English | MEDLINE | ID: mdl-37855107

ABSTRACT

Bis(thiosemicarbazone) and pyridylhydrazone-thiosemicarbazone chelators have demonstrated utility in nuclear medicine. In particular, the 64Cu2+ complexes have been extensively developed for hypoxia imaging and molecular imaging of peptide and protein markers of disease. However, the chemistry and application of bis(thiosemicarbazone) and pyridylhydrazone-thiosemicarbazone chelators in combination with 99mTc, the most widely used radionuclide in nuclear medicine, is underexplored. Herein, a series of bis(thiosemicarbazone) and pyridylhydrazone-thiosemicarbazone chelators were radiolabeled with nitrido-technetium-99m in an optimized one-pot synthesis from [99mTc]TcO4-. Optimization of the radiochemical syntheses allowed for production of the complexes in >90% radiochemical conversion with apparent molar activities of 3.3-5 GBq/µmol. Competition experiments demonstrated the excellent stability of the complexes. The nitrido-technetium-99 complexes were synthesized, and the chemical identities were investigated using mass spectrometry, spectroscopy, and density functional theory calculations. Complexation of nitrido-rhenium(V) was achieved with the N4-dialkylated bis(thiosemicarbazones). Planar imaging and ex vivo biodistribution studies of the five 99mTc complexes were conducted on healthy BALB/c mice to determine in vivo behavior. The lipophilic nature of the complexes resulted in uptake of 1.6-5.7% ID g-1 in the brain at 2 min postinjection and retention of 0.4-1.7% ID g-1 at 15 min postinjection. The stability of the complexes and the biodistribution data demonstrate that these chelators are ideal platforms for future production of radiopharmaceutical candidates.


Subject(s)
Technetium , Thiosemicarbazones , Mice , Animals , Technetium/chemistry , Thiosemicarbazones/chemistry , Tissue Distribution , Radioisotopes , Radiopharmaceuticals/chemistry , Chelating Agents/chemistry
6.
Chem Commun (Camb) ; 59(16): 2243-2246, 2023 Feb 21.
Article in English | MEDLINE | ID: mdl-36723107

ABSTRACT

With the aim of developing the concept of pretargeted click chemistry for the diagnosis of Alzheimer's disease two antibodies specific for amyloid-ß were modified to incorporate trans-cyclooctene functional groups. Two bis(thiosemicarbazone) compounds with pendant 1,2,4,5-tetrazine functional groups were prepared and radiolabelled with positron emitting copper-64. The new copper-64 complexes rapidly react with the trans-cyclooctene functionalized antibodies in a bioorthogonal click reaction and cross the blood-brain barrier in mice.


Subject(s)
Alzheimer Disease , Animals , Mice , Copper Radioisotopes/chemistry , Cell Line, Tumor , Antibodies , Amyloid beta-Peptides/chemistry , Positron-Emission Tomography/methods , Molecular Imaging , Cyclooctanes/chemistry , Click Chemistry/methods
7.
Mol Pharm ; 20(1): 255-266, 2023 01 02.
Article in English | MEDLINE | ID: mdl-36331024

ABSTRACT

The voltage-gated potassium channel Kv1.3 regulates the pro-inflammatory function of microglia and is highly expressed in the post-mortem brains of individuals with Alzheimer's and Parkinson's diseases. HsTX1[R14A] is a selective and potent peptide inhibitor of the Kv1.3 channel (IC50 ∼ 45 pM) that has been shown to decrease cytokine levels in a lipopolysaccharide (LPS)-induced mouse model of inflammation. Central nervous system exposure to HsTX1[R14A] was previously detected in this mouse model using liquid chromatography with tandem mass spectrometry, but this technique does not report on the spatial distribution of the peptide in the different brain regions or peripheral organs. Herein, the in vivo distribution of a [64Cu]Cu-labeled DOTA conjugate of HsTX1[R14A] was observed for up to 48 h by positron emission tomography (PET) in mice. After subcutaneous administration to untreated C57BL/6J mice, considerable uptake of the radiolabeled peptide was observed in the kidney, but it was undetectable in the brain. Biodistribution of a [68Ga]Ga-DOTA conjugate of HsTX1[R14A] was then investigated in the LPS-induced mouse model of neuroinflammation to assess the effects of inflammation on uptake of the peptide in the brain. A control peptide with very weak Kv1.3 binding, [68Ga]Ga-DOTA-HsTX1[R14A,Y21A,K23A] (IC50 ∼ 6 µM), was also tested. Significantly increased uptake of [68Ga]Ga-DOTA-HsTX1[R14A] was observed in the brains of LPS-treated mice compared to mice treated with control peptide, implying that the enhanced uptake was due to increased Kv1.3 expression rather than simply increased blood-brain barrier disruption. PET imaging also showed accumulation of [68Ga]Ga-DOTA-HsTX1[R14A] in inflamed joints and decreased clearance from the kidneys in LPS-treated mice. These biodistribution data highlight the potential of HsTX1[R14A] as a therapeutic for the treatment of neuroinflammatory diseases mediated by overexpression of Kv1.3.


Subject(s)
Lipopolysaccharides , Neuroinflammatory Diseases , Mice , Animals , Tissue Distribution , Gallium Radioisotopes/metabolism , Mice, Inbred C57BL , Peptides/chemistry , Brain/diagnostic imaging , Brain/metabolism , Inflammation/metabolism , Positron-Emission Tomography
8.
Biomed Pharmacother ; 158: 114069, 2023 Feb.
Article in English | MEDLINE | ID: mdl-36502754

ABSTRACT

Fibrosis is a hallmark of chronic hypertension and disrupts the viability of human bone marrow-derived mesenchymal stromal cells (BM-MSCs) post-transplantation. This study thus, determined whether the anti-fibrotic drug, serelaxin (RLX), could enhance the therapeutic effects of BM-MSCs or BM-MSC-derived exosomes (BM-MSC-EXO) in hypertensive mice. Left ventricular (LV) fibrosis in particular was assessed using conventional histological staining and non-invasive cardiac magnetic resonance imaging (CMRI). CMRI was employed using a novel magnetisation prepared 2 rapid acquisition gradient echo (MP2RAGE) sequence to simultaneously perform late gadolinium enhancement imaging and T1 mapping. Adult male C57BL/6 mice were uninephrectomised, received deoxycorticosterone acetate and saline to drink (1 K/DOCA/salt) for 21 days, whilst control mice were given normal drinking water for the same time-period. On day 14 post-injury, subgroups of 1 K/DOCA/salt-hypertensive mice were treated with RLX alone or in combination with BM-MSCs or BM-MSC-EXO; or the mineralocorticoid receptor antagonist, spironolactone. At day 21 post-injury, LV and kidney histopathology was assessed, whilst LV fibrosis and function were additionally analysed by CMRI and echocardiography. 1 K/DOCA/salt-hypertensive mice developed kidney tubular injury, inflammation, fibrosis, and more moderate LV hypertrophy, fibrosis and diastolic dysfunction. RLX and BM-MSCs combined provided optimal protection against these pathologies and significantly reduced picrosirius red-stained organ fibrosis and MP2RAGE analysis of LV fibrosis. A significant correlation between MP2RAGE analysis and histologically-stained interstitial LV fibrosis was detected. It was concluded that the MP2RAGE sequence enhanced the non-invasive CMRI detection of LV fibrosis. Furthermore, combining RLX and BM-MSCs may represent a promising treatment option for hypertensive cardiorenal syndrome.


Subject(s)
Desoxycorticosterone Acetate , Hypertension , Mesenchymal Stem Cell Transplantation , Mice , Male , Humans , Animals , Contrast Media , Gadolinium/pharmacology , Mice, Inbred C57BL , Hypertension/drug therapy , Fibrosis , Mesenchymal Stem Cell Transplantation/methods
10.
Dalton Trans ; 51(37): 14064-14078, 2022 Sep 26.
Article in English | MEDLINE | ID: mdl-35822662

ABSTRACT

The syntheses of non-oxido/non-nitrido bis(thiosemicarbazonato)technetium(V) complexes featuring a series of alkyl and ether substituents is presented. The bis(thiosemicarbazones) were radiolabelled with technetium-99m using an optimised one-pot synthesis from [99mTc][TcO4]-. Mass spectrometry and computational chemistry data suggested a distorted trigonal prismatic coordination environment for the bis(thiosemicarbazonato)technetium(V) complexes by way of a bis(thiosemicarbazone)technetium(V)-oxido intermediate complex. The lipophilicities of the complexes were estimated using distribution ratios and three of the new complexes were investigated in mice using kinetic planar imaging and ex vivo biodistribution experiments and were compared to [99mTc][TcO4]-. Modification of the technetium complexes with various lipophilic functional groups altered the biodistributions of the complexes in mice despite evidence suggesting limited stability of the complexes to biologically relevant conditions. The most hydrophilic complex had higher uptake in the kidneys compared to the most lipophilic, which had higher liver uptake, suggesting modification of the excretion pathways.


Subject(s)
Technetium , Thiosemicarbazones , Animals , Ethers , Mice , Radionuclide Imaging , Radiopharmaceuticals/chemistry , Technetium/chemistry , Thiosemicarbazones/chemistry , Tissue Distribution
11.
J Control Release ; 345: 443-463, 2022 05.
Article in English | MEDLINE | ID: mdl-35337938

ABSTRACT

Survival outcomes for patients with glioblastoma multiforme (GBM) have remained poor for the past 15 years, reflecting a clear challenge in the development of more effective treatment strategies. The efficacy of systemic therapies for GBM is greatly limited by the presence of the blood-brain barrier (BBB), which prevents drug penetration and accumulation in regions of infiltrative tumour, as represented in a consistent portion of GBM lesions. Focused ultrasound (FUS) - a technique that uses low-frequency ultrasound waves to induce targeted temporary disruption of the BBB - promises to improve survival outcomes by enhancing drug delivery and accumulation to infiltrating tumour regions. In this review we discuss the current state of preclinical investigations using FUS to enhance delivery of systemic therapies to intracranial neoplasms. We highlight critical methodological inconsistencies that are hampering clinical translation of FUS and we provide guiding principles for future preclinical studies. Particularly, we focus our attention on the importance of the selection of clinically relevant animal models and to the standardization of methods for FUS delivery, which will be paramount to the successful clinical translation of this promising technology for treatment in GBM patients. We also discuss how preclinical FUS research can benefit the development of GBM immunotherapies.


Subject(s)
Brain Neoplasms , Glioblastoma , Glioma , Animals , Blood-Brain Barrier/pathology , Brain Neoplasms/drug therapy , Brain Neoplasms/therapy , Drug Delivery Systems , Glioblastoma/drug therapy , Glioma/diagnostic imaging , Glioma/drug therapy , Humans , Microbubbles
12.
Cancers (Basel) ; 14(3)2022 Feb 08.
Article in English | MEDLINE | ID: mdl-35159107

ABSTRACT

Over the last three decades changes in the treatment paradigm for newly diagnosed multiple myeloma (MM) have led to a significant increase in overall survival. Despite this, the majority of patients relapse after one or more lines of treatment while acquiring resistance to available therapies. Panobinostat, a pan-histone deacetylase inhibitor, was approved by the FDA in 2015 for patients with relapsed MM but how to incorporate panobinostat most effectively into everyday practice remains unclear. Dysregulation of the Wnt canonical pathway, and its key mediator ß-catenin, has been shown to be important for the evolution of MM and the acquisition of drug resistance, making it a potentially attractive therapeutic target. Despite concerns regarding the safety of Wnt pathway inhibitors, we have recently shown that the ß-catenin inhibitor Tegavivint is deliverable and effective in in vivo models of MM. In this study we show that the combination of low concentrations of panobinostat and Tegavivint have significant in vitro and in vivo anti-MM effects including in the context of proteasome inhibitor resistance, by targeting both aerobic glycolysis and mitochondrial respiration and the down-regulation of down-stream ß-catenin targets including myc, cyclinD1, and cyclinD2. The significant anti-MM effect of this novel combination warrants further evaluation for the treatment of MM patients with relapsed and/or refractory MM.

13.
Front Cell Dev Biol ; 9: 736574, 2021.
Article in English | MEDLINE | ID: mdl-34513850

ABSTRACT

The characterization of developmental phenotypes often relies on the accurate linear measurement of structures that are small and require laborious preparation. This is tedious and prone to errors, especially when repeated for the multiple replicates that are required for statistical analysis, or when multiple distinct structures have to be analyzed. To address this issue, we have developed a pipeline for characterization of long-bone length using X-ray microtomography (XMT) scans. The pipeline involves semi-automated algorithms for automatic thresholding and fast interactive isolation and 3D-model generation of the main limb bones, using either the open-source ImageJ plugin BoneJ or the commercial Mimics Innovation Suite package. The tests showed the appropriate combination of scanning conditions and analysis parameters yields fast and comparable length results, highly correlated with the measurements obtained via ex vivo skeletal preparations. Moreover, since XMT is not destructive, the samples can be used afterward for histology or other applications. Our new pipelines will help developmental biologists and evolutionary researchers to achieve fast, reproducible and non-destructive length measurement of bone samples from multiple animal species.

14.
Int J Radiat Oncol Biol Phys ; 111(5): 1276-1288, 2021 12 01.
Article in English | MEDLINE | ID: mdl-34364976

ABSTRACT

PURPOSE: In the past 3 decades, synchrotron microbeam radiation therapy (S-MRT) has been shown to achieve both good tumor control and normal tissue sparing in a range of preclinical animal models. However, the use of S-MRT for the treatment of lung tumors has not yet been investigated. This study is the first to evaluate the therapeutic efficacy of S-MRT for the treatment of lung carcinoma, using a new syngeneic and orthotopic mouse model. METHODS AND MATERIALS: Lewis Lung carcinoma-bearing mice were irradiated with 2 cross-fired arrays of S-MRT or synchrotron broad-beam (S-BB) radiation therapy. S-MRT consisted of 17 microbeams with a width of 50 µm and center-to-center spacing of 400 µm. Each microbeam delivered a peak entrance dose of 400 Gy whereas S-BB delivered a homogeneous entrance dose of 5.16 Gy (corresponding to the S-MRT valley dose). RESULTS: Both treatments prolonged the survival of mice relative to the untreated controls. However, mice in the S-MRT group developed severe pulmonary edema around the irradiated carcinomas and did not have improved survival relative to the S-BB group. Subsequent postmortem examination of tumor size revealed that the mice in the S-MRT group had notably smaller tumor volume compared with the S-BB group, despite the presence of edema. Mice that were sham-implanted did not display any decline in health after S-MRT, experiencing only mild and transient edema between 4 days and 3 months postirradiation which disappeared after 4 months. Finally, a parallel study investigating the lungs of healthy mice showed the complete absence of radiation-induced pulmonary fibrosis 6 months after S-MRT. CONCLUSIONS: S-MRT is a promising tool for the treatment of lung carcinoma, reducing tumor size compared with mice treated with S-BB and sparing healthy lungs from pulmonary fibrosis. Future experiments should focus on optimizing S-MRT parameters to minimize pulmonary edema and maximize the therapeutic ratio.


Subject(s)
Lung Neoplasms , Pulmonary Edema , Pulmonary Fibrosis , Animals , Lung , Lung Neoplasms/radiotherapy , Mice , Synchrotrons
15.
Magn Reson Imaging ; 79: 112-120, 2021 06.
Article in English | MEDLINE | ID: mdl-33600894

ABSTRACT

We report the design, construction, and initial tests of a hyperpolariser to produce polarised 129Xe and 3He gas for medical imaging of the lung. The hyperpolariser uses the Spin-Exchange Optical Pumping method to polarise the nuclear spins of the isotopic gas. Batch mode operation was chosen for the design to produce polarised 129Xe and polarised 3He. Two-side pumping, electrical heating and a piston to transfer the polarised gas were some of the implemented techniques that are not commonly used in hyperpolariser designs. We have carried out magnetic resonance imaging experiments demonstrating that the 3He and 129Xe polarisation reached were sufficient for imaging, in particular for in vivo lung imaging using 129Xe. Further improvements to the hyperpolariser have also been discussed.


Subject(s)
Magnetic Resonance Imaging , Xenon Isotopes , Heating , Humans , Lung/diagnostic imaging , Male , Radiography
16.
Nutr Neurosci ; 24(11): 885-895, 2021 Nov.
Article in English | MEDLINE | ID: mdl-31746283

ABSTRACT

Background: Human milk contains high concentrations and diversity of sialylated oligosaccharides that have multifunctional health benefits, however, their potential role in optimizing neurodevelopment remains unknown.Objective: To investigate the effect of sialylated milk oligosaccharides (SMOS) intervention on neurotransmitters and brain metabolites in piglets.Methods: 3-day-old piglets were randomly allocated to one of three groups and fed either standard sow milk replacer (SMR) alone (n = 15), SMR supplemented with sialyllactose 9.5 g/kg (SL, n = 16) or a combination of SL and 6'-sialyllactosamine 9.5 g/kg (SL/SLN, n = 15) for 35 days. Brain spectra were acquired using a 3T Magnetic Resonance Spectroscopic (MRS) system.Results: SMOS fed piglets were observed to have significantly increased the absolute levels of myo-inositol (mIns) and glutamate + glutamine (Glx), in particular, the SL/SLN group. Similar findings were found in the relative amount of these metabolites calculated as ratios to creatine (Cr), choline (Cho) and N-acetylaspartate (NAA) respectively (P < .05). In addition, there were significant positive correlations of brain NAA, total NAA (TNAA), mIns, total Cho (TCho), total Cr (TCr), scyllo-Inositol (SI) and glutathione (Glth) with total white matter volume; Glu and SI with whole brain volume; and SI with whole brain weight respectively (P < .01). SLN and 3'SL intake were closely correlated with the levels of brain Glu, mlns and Glx in the treatment groups only (P < .01-.05).Conclusions: We provide in vivo evidences that milk SMOS can alter many important brain metabolites and neurotransmitters required for optimizing neurodevelopment in piglets, an animal model of human infants.


Subject(s)
Brain , Milk , Animals , Female , Aspartic Acid/metabolism , Brain/metabolism , Choline/metabolism , Creatine/metabolism , Magnetic Resonance Spectroscopy/methods , Neurotransmitter Agents/metabolism , Oligosaccharides , Swine
17.
Transl Stroke Res ; 11(3): 387-401, 2020 06.
Article in English | MEDLINE | ID: mdl-31709500

ABSTRACT

Infection is a leading cause of death in patients with stroke; however, the impact of cerebral infarct size or location on infectious outcome is unclear. To examine the effect of infarct size on post-stroke infection, we utilised the intraluminal middle-cerebral artery occlusion (MCAO) mouse model of ischemic stroke and adjusted the duration of arterial occlusion. At 1 day following stroke onset, the proportion of mice with infection was significantly greater in mice that had larger infarct sizes. Additionally, the presence of lung infection in these mice with severe strokes extended past 2 days, suggestive of long-term immune impairment. At the acute phase, our data demonstrated an inverse relationship between infarct volume and the number of circulating leukocytes, indicating the elevated risk of infection in more severe stroke is associated with reduced cellularity in peripheral blood, owing predominately to markedly decreased lymphocyte numbers. In addition, the stroke-induced reduction of lymphocyte-to-neutrophil ratio was also evident in the lung of all post-stroke animals. To investigate the effect of infarct location on post-stroke infection, we additionally performed a photothrombotic (PT) model of stroke and using an innovative systematic approach of analysis, we found the location of cerebral infarct does not impact on the susceptibility of post-stroke infection, confirming the greater role of infarct volume over infarct location in the susceptibility to infection. Our experimental findings were validated in a clinical setting and reinforced that stroke severity, and not infarct location, influences the risk of infection after stroke.


Subject(s)
Bacterial Infections/complications , Stroke/microbiology , Stroke/pathology , Aged , Animals , Disease Models, Animal , Female , Humans , Infarction, Middle Cerebral Artery , Male , Mice, Inbred C57BL , Risk Factors , Severity of Illness Index
18.
Neuroimage Clin ; 24: 101991, 2019.
Article in English | MEDLINE | ID: mdl-31473545

ABSTRACT

BACKGROUND: Fetal growth restriction (FGR) is a serious pregnancy complication associated with increased risk of adverse neurodevelopment and neuromorbidity. Current imaging techniques, including conventional magnetic resonance imaging (MRI), are not sensitive enough to detect subtle structural abnormalities in the FGR brain. We examined whether advanced MRI analysis techniques have the capacity to detect brain injury (particularly white matter injury) caused by chronic hypoxia-induced fetal growth restriction in newborn preterm lambs. METHODS: Surgery was undertaken in twin bearing pregnant ewes at 88-90 days gestation (term = 150 days) to induce FGR in one fetus. At 127 days gestation (~32 weeks human brain development), FGR and control (appropriate for gestational age, AGA) lambs were delivered by caesarean section, intubated and ventilated. Conventional and advanced brain imaging was conducted within the first two hours of life using a 3T MRI scanner. T1-weighted (T1w) and T2-weighted (T2w) structural imaging, magnetic resonance spectroscopy (MRS), and diffusion MRI (dMRI) data were acquired. Diffusion tensor imaging (DTI) modelling and analysis of dMRI data included the following regions of interest (ROIs): subcortical white matter, periventricular white matter, cerebellum, hippocampus, corpus callosum and thalamus. Fixel-based analysis of 3-tissue constrained spherical deconvolution (CSD) of the dMRI data was performed and compared between FGR and AGA lambs. Lambs were euthanised immediately after the scans and brain histology performed in the regions of interest to correlate with imaging. RESULTS: FGR and AGA lamb (body weight, mean (SD): 2.2(0.5) vs. 3.3(0.3) kg, p = .002) MRI brain scans were analysed. There were no statistically significant differences observed between the groups in conventional T1w, T2w or MRS brain data. Mean, axial and radial diffusivity, and fractional anisotropy indices obtained from DTI modelling also did not show any statistically significant differences between groups in the ROIs. Fixel-based analysis of 3-tissue CSD, however, did reveal a decrease in fibre cross-section (FC, p < .05) but not in fibre density (FD) or combined fibre density and cross-section (FDC) in FGR vs. AGA lamb brains. The specific tracts that showed a decrease in FC were in the regions of the periventricular white matter, hippocampus and cerebellar white matter, and were supported by histological evidence of white matter hypomyelination and disorganisation in corresponding FGR lamb brain regions. CONCLUSIONS: The neuropathology associated with FGR in neonatal preterm lambs is subtle and imaging detection may require advanced MRI and tract-based analysis techniques. Fixel-based analysis of 3-tissue CSD demonstrates that the preterm neonatal FGR brain shows evidence of macrostructural (cross-sectional) deficits in white matter subsequent to altered antenatal development. These findings can inform analysis of similar brain pathology in neonatal infants.


Subject(s)
Brain Injuries/diagnostic imaging , Fetal Growth Retardation/diagnostic imaging , Magnetic Resonance Imaging/methods , Neuroimaging/methods , White Matter/diagnostic imaging , Animals , Animals, Newborn , Diffusion Tensor Imaging , Disease Models, Animal , Sheep
19.
Aging Cell ; 18(5): e12980, 2019 10.
Article in English | MEDLINE | ID: mdl-31199577

ABSTRACT

Bacterial infection a leading cause of death among patients with stroke, with elderly patients often presenting with more debilitating outcomes. The findings from our retrospective study, supported by previous clinical reports, showed that increasing age is an early predictor for developing fatal infectious complications after stroke. However, exactly how and why older individuals are more susceptible to infection after stroke remains unclear. Using a mouse model of transient ischaemic stroke, we demonstrate that older mice (>12 months) present with greater spontaneous bacterial lung infections compared to their younger counterparts (7-10 weeks) after stroke. Importantly, we provide evidence that older poststroke mice exhibited elevated intestinal inflammation and disruption in gut barriers critical in maintaining colonic integrity following stroke, including reduced expression of mucin and tight junction proteins. In addition, our data support the notion that the localized pro-inflammatory microenvironment driven by increased tumour necrosis factor-α production in the colon of older mice facilitates the translocation and dissemination of orally inoculated bacteria to the lung following stroke onset. Therefore, findings of this study demonstrate that exacerbated dysfunction of the intestinal barrier in advanced age promotes translocation of gut-derived bacteria and contributes to the increased risk to poststroke bacterial infection.


Subject(s)
Aging/metabolism , Colon/metabolism , Pneumonia/metabolism , Stroke/metabolism , Urinary Tract Infections/metabolism , Acute Disease , Aged , Animals , Cohort Studies , Disease Models, Animal , Female , Humans , Male , Mice , Mice, Inbred C57BL , Retrospective Studies , Risk Factors
20.
Eur Radiol ; 29(10): 5577-5589, 2019 Oct.
Article in English | MEDLINE | ID: mdl-30937591

ABSTRACT

PURPOSE: This study was conducted in order to investigate the topological organization of functional and structural brain networks in diabetic kidney disease (DKD) and its potential clinical relevance. METHODS: Two hundred two subjects (62 DKD patients, 60 diabetes mellitus [DM] patients, and 80 healthy controls) underwent laboratory examination, neuropsychological test, and magnetic resonance imaging (MRI). Large-scale functional and structural brain networks were constructed and graph theoretical network analyses were performed. The effect of renal function on brain functional and structural networks in DKD patients was further evaluated. Correlations were performed between network properties and neuropsychological scores and clinical variables. RESULTS: Progressing deteriorated global and local network topology organizations (especially for functional network) were observed for DKD patients compared with control subjects (all p < 0.05, Bonferroni-corrected), with intermediate values for the patients with DM. DKD patients showed normally appearing functional-structural coupling compared with controls, while DM patients manifested functional-structural decoupling (p < 0.05, Bonferroni-corrected). Impaired kidney function markedly affected functional and structural network organization in DKD patients (all p < 0.05). Urea nitrogen correlated with global and local efficiency in the structural networks (r = - 0.551, p < 0.001; r = - 0.476, p < 0.001, respectively). Global and local efficiency in the structural networks and normalized characteristic path length in the functional networks were associated with information processing speed and/or psychomotor speed. CONCLUSION: DKD patients showed enhanced functional and structural brain network disruption and normally appearing functional-structural coupling compared with DM patients, which correlated with kidney function, renal toxins, and cognitive performance. KEY POINTS: • DKD patients showed markedly disrupted functional and structural brain network efficiency measures compared with DM patients and healthy controls. • Reduced kidney function clearly deteriorated functional and structural brain networks in DKD patients. • DKD patients displayed normally appearing functional-structural coupling compared with DM patients.


Subject(s)
Diabetic Nephropathies/physiopathology , Neural Pathways/physiopathology , Adult , Aged , Brain/diagnostic imaging , Brain/physiopathology , Brain Mapping/methods , Case-Control Studies , Diabetic Nephropathies/diagnostic imaging , Diabetic Nephropathies/psychology , Female , Humans , Image Interpretation, Computer-Assisted/methods , Magnetic Resonance Imaging/methods , Male , Middle Aged , Neural Pathways/diagnostic imaging , Neuropsychological Tests
SELECTION OF CITATIONS
SEARCH DETAIL
...