Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Nutr Rev ; 80(11): 2136-2153, 2022 10 10.
Article in English | MEDLINE | ID: mdl-35568996

ABSTRACT

CONTEXT: Nutritional interventions for newborns with brain injury are scarce, and there are gaps in the knowledge of their mechanisms of action in preventing the occurrence of cerebral palsy (CP) or the incidence of other developmental disabilities. OBJECTIVE: The objective of this review was to assess the effect of nutritional interventions in preventing nonprogressive congenital or perinatal brain injuries, or in improving outcomes related to neurological development. DATA SOURCES: Randomized trials on any nutritional intervention for pregnant women at risk of preterm delivery, or for children with low birth weight, preterm, or with confirmed or suspected microcephaly, CP, or fetal alcohol syndrome disorders (FASDs) were retrieved from MEDLINE, Embase, Scopus, Web of Science, LILACS, and CENTRAL databases from inception to September 17, 2020. DATA EXTRACTION: Data extraction, risk of bias (Cochrane Risk of Bias tool 2), and quality of evidence (GRADE approach) were assessed by 2 authors. DATA ANALYSIS: Pooled risk ratios (RRs) with 95% confidence intervals were calculated using a random-effects meta-analysis. Seventeen studies were included on intravenous interventions (magnesium sulfate [n = 5], amino acids [n = 4], vitamin A [n = 1], and N-acetylcysteine [n = 1]); enteral interventions (vitamin D [n = 1], prebiotic [n = 1], nutrient-enriched formula [n = 1], and speed of increasing milk feeds [n = 1]); and oral interventions (choline [n = 1] and docosahexaenoic acid, choline, and uridine monophosphate [n = 1]). All studies assessed CP, except 1 on FASDs. Eight studies were judged as having high risk of bias. Five studies (7413 babies) with high-quality evidence demonstrated decreased risk of childhood CP (RR = 0.68, 95% CI: 0.52-0.88) with magnesium sulfate. Interventions with amino acids had no effect on CP prevention or other outcomes. Except for 1 study, no other intervention decreased the risk of CP or FASDs. CONCLUSION: Although different types of nutritional interventions were found, only those with antenatal magnesium sulfate were effective in decreasing CP risk in preterm infants. Well-designed, adequately powered randomized clinical trials are required.


Subject(s)
Brain Injuries , Cerebral Palsy , Fetal Alcohol Spectrum Disorders , Acetylcysteine , Brain Injuries/drug therapy , Brain Injuries/prevention & control , Cerebral Palsy/drug therapy , Cerebral Palsy/epidemiology , Cerebral Palsy/prevention & control , Child , Choline , Docosahexaenoic Acids , Female , Fetal Alcohol Spectrum Disorders/drug therapy , Humans , Infant , Infant, Newborn , Infant, Premature , Magnesium Sulfate/therapeutic use , Pregnancy , Randomized Controlled Trials as Topic , Uridine Monophosphate , Vitamin A , Vitamin D
2.
Int J Mol Sci ; 20(1)2018 Dec 20.
Article in English | MEDLINE | ID: mdl-30577497

ABSTRACT

Nonalcoholic fatty liver disease (NAFLD) is highly prevalent worldwide. The most severe form is nonalcoholic steatohepatitis (NASH). Among risk factors for the development of NAFLD is excessive lipid intake. Since palm (P) oil is the most consumed oil in the world, we aimed to investigate the effects of high-fat diets made with P oil, hybrid palm (HP) oil, or olive (O) oil in liver. Twenty-four male mice (C57Bl/6J) were fed a high-fat diet (41% fat) containing P, HP, or O oils for 8 weeks and compared to a control (C) group fed a chow diet. Adiposity was measured with computed tomography. Body, adipose tissue, and liver weights, as well as liver fat (Bligh⁻Dyer), blood lipid profile, glucose, and liver enzymes were measured. Liver histology (hematoxylin⁻eosin) and transcriptome (microarray-based) were performed. ANOVA tests with Newman⁻Keuls were used. Body weight was increased in the P group (p < 0.001) and body fat in the O group (C vs. O p ≤ 0.01, P vs. O p ≤ 0.05, HP vs. O p ≤ 0.05). All high-fat diets disturbed the blood lipid profile and glucose, with marked effects of HP on very low-density lipoprotein cholesterol (VLDL), triglycerides, and alkaline phosphatase (p ≤ 0.001). HP had the highest liver fat (42.76 ± 1.58), followed by P (33.94 ± 1.13). O had a fat amount comparable to C (16.46 ± 0.34, 14.71 ± 0.70, respectively). P and HP oils induced hepatocyte ballooning. Transcriptome alterations of the O group were related to amino acid metabolism and fatty acid (FA) metabolism, the P group to calcium ion homeostasis, and HP oil to protein localization. Both P and HP oils induced NASH in mice via disturbed hepatocyte transcription. This raises concerns about the content of these oils in several industrialized foods.


Subject(s)
Liver/drug effects , Liver/metabolism , Non-alcoholic Fatty Liver Disease/etiology , Olive Oil/pharmacology , Palm Oil/pharmacology , Plant Oils/pharmacology , Transcriptome , Adipose Tissue/drug effects , Adipose Tissue/metabolism , Adiposity , Animals , Biopsy , Body Weight/drug effects , Diet, High-Fat/adverse effects , Gene Expression Profiling , Lipid Metabolism/drug effects , Liver Function Tests , Male , Mice , Non-alcoholic Fatty Liver Disease/diagnosis , Non-alcoholic Fatty Liver Disease/drug therapy , Non-alcoholic Fatty Liver Disease/metabolism , Olive Oil/chemistry , Palm Oil/chemistry , Plant Oils/chemistry , Tomography, X-Ray Computed
3.
Br J Nutr ; 118(1): 41-52, 2017 Jul.
Article in English | MEDLINE | ID: mdl-28797310

ABSTRACT

The quality of dietary lipids in the maternal diet can programme the offspring to diseases in later life. We investigated whether the maternal intake of palm oil or interesterified fat, substitutes for trans-unsaturated fatty acids (FA), induces metabolic changes in the adult offspring. During pregnancy and lactation, C57BL/6 female mice received normolipidic diets containing partially hydrogenated vegetable fat rich in trans-unsaturated fatty acids (TG), palm oil (PG), interesterified fat (IG) or soyabean oil (CG). After weaning, male offspring from all groups received the control diet until day 110. Plasma glucose and TAG and liver FA profiles were ascertained. Liver mitochondrial function was accessed with high-resolution respirometry by measuring VO2, fluorimetry for detection of hydrogen peroxide (H2O2) production and mitochondrial Ca2+ uptake. The results showed that the IG offspring presented a 20 % increase in plasma glucose and both the IG and TG offspring presented a 2- and 1·9-fold increase in TAG, respectively, when compared with CG offspring. Liver MUFA and PUFA contents decreased in the TG and IG offspring when compared with CG offspring. Liver MUFA content also decreased in the PG offspring. These modifications in FA composition possibly affected liver mitochondrial function, as respiration was impaired in the TG offspring and H2O2 production was higher in the IG offspring. In addition, mitochondrial Ca2+ retention capacity was reduced by approximately 40 and 55 % in the TG and IG offspring, respectively. In conclusion, maternal consumption of trans-unsaturated and interesterified fat affected offspring health by compromising mitochondrial bioenergetics and lipid metabolism in the liver.


Subject(s)
Energy Metabolism , Fatty Acids/adverse effects , Lactation , Liver/metabolism , Maternal Nutritional Physiological Phenomena , Mitochondria/metabolism , Trans Fatty Acids/adverse effects , Animal Nutritional Physiological Phenomena , Animals , Blood Glucose/metabolism , Calcium/metabolism , Dietary Fats/adverse effects , Dietary Fats/metabolism , Fatty Acids/metabolism , Fatty Acids, Monounsaturated/metabolism , Fatty Acids, Unsaturated/metabolism , Female , Hydrogen Peroxide/metabolism , Male , Mice, Inbred C57BL , Oxygen Consumption , Plant Oils , Pregnancy , Prenatal Exposure Delayed Effects , Respiration , Trans Fatty Acids/metabolism , Triglycerides/blood
SELECTION OF CITATIONS
SEARCH DETAIL
...