Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 28
Filter
Add more filters










Publication year range
1.
J Theor Biol ; 558: 111354, 2023 02 07.
Article in English | MEDLINE | ID: mdl-36427531

ABSTRACT

Metabolism is essential for cell function and adaptation. Because of their central role in metabolism, kinetic parameters and enzyme concentrations are under constant selective pressure to adapt the fluxes of the metabolic networks to the needs of the organism. In line with various studies dealing with enzyme evolution, we recently developed a model of the evolution of enzyme concentrations under selection for increased flux, considered as a proxy for fitness (Coton et al., 2022). With this model, taking into account two realistic cellular constraints, competition for resources and co-regulation, we determined the evolutionary equilibria and range of neutral variations of enzyme concentrations. In this article, we expanded this model by considering that the enzymes in a pathway can belong to different co-regulation groups. We determined the equilibria and showed that the constraints modify the adaptive landscape by limiting the number of independent dimensions. We also showed that any trade-off between enzyme concentrations is sufficient to limit the flux and relax selection for increasing the concentration of other enzymes. Even though this model is based on simplifying assumptions, the complexity of the relationship between enzyme concentrations prevents the formal analysis of the range of neutral variation of enzyme concentrations. However, we could show that selection for maximizing the flux results in selective neutrality for all enzymes regardless the constraints applied, giving generality to the prediction of Hartl et al. (1985).


Subject(s)
Evolution, Molecular , Metabolic Networks and Pathways , Kinetics , Adaptation, Physiological
3.
J Theor Biol ; 538: 111015, 2022 04 07.
Article in English | MEDLINE | ID: mdl-35016894

ABSTRACT

The central role of metabolism in cell functioning and adaptation has given rise to countless studies on the evolution of enzyme-coding genes and network topology. However, very few studies have addressed the question of how enzyme concentrations change in response to positive selective pressure on the flux, considered a proxy of fitness. In particular, the way cellular constraints, such as resource limitations and co-regulation, affect the adaptive landscape of a pathway under selection has never been analyzed theoretically. To fill this gap, we developed a model of the evolution of enzyme concentrations that combines metabolic control theory and an adaptive dynamics approach, and integrates possible dependencies between enzyme concentrations. We determined the evolutionary equilibria of enzyme concentrations and their range of neutral variation, and showed that they differ with the properties of the enzymes, the constraints applied to the system and the initial enzyme concentrations. Simulations of long-term evolution confirmed all analytical and numerical predictions, even though we relaxed the simplifying assumptions used in the analytical treatment.


Subject(s)
Evolution, Molecular , Metabolic Networks and Pathways , Adaptation, Physiological/genetics , Biological Evolution , Selection, Genetic
4.
Genetica ; 150(3-4): 153-158, 2022 Aug.
Article in English | MEDLINE | ID: mdl-34739647

ABSTRACT

Even though the word "phenotype", as well as the expression "genotype-phenotype relationship", are a part of the everyday language of biologists, they remain abstract notions that are sometimes misunderstood or misused. In this article, I begin with a review of  the genesis of the concept of phenotype and of the meaning of the genotype-phenotype "relationship" from a historical perspective. I then illustrate how the development of new approaches for exploring the living world has enabled us to phenotype organisms at multiple levels, with traits that can either be measures or parameters of functions, leading to a virtually unlimited amount of phenotypic data. Thus, pleiotropy becomes a central issue in the study of the genotype-phenotype relationship. Finally, I provide a few examples showing that important genetic and evolutionary features clearly differ with the phenotypic level considered. The way genotypic variation propagates across the phenotypic levels to shape fitness variation is an essential research program in biology.


Subject(s)
Biological Evolution , Genotype , Phenotype
5.
Genetica ; 150(3-4): 159, 2022 Aug.
Article in English | MEDLINE | ID: mdl-34914029
6.
PLoS Comput Biol ; 17(7): e1009157, 2021 07.
Article in English | MEDLINE | ID: mdl-34264947

ABSTRACT

The relationship between different levels of integration is a key feature for understanding the genotype-phenotype map. Here, we describe a novel method of integrated data analysis that incorporates protein abundance data into constraint-based modeling to elucidate the biological mechanisms underlying phenotypic variation. Specifically, we studied yeast genetic diversity at three levels of phenotypic complexity in a population of yeast obtained by pairwise crosses of eleven strains belonging to two species, Saccharomyces cerevisiae and S. uvarum. The data included protein abundances, integrated traits (life-history/fermentation) and computational estimates of metabolic fluxes. Results highlighted that the negative correlation between production traits such as population carrying capacity (K) and traits associated with growth and fermentation rates (Jmax) is explained by a differential usage of energy production pathways: a high K was associated with high TCA fluxes, while a high Jmax was associated with high glycolytic fluxes. Enrichment analysis of protein sets confirmed our results. This powerful approach allowed us to identify the molecular and metabolic bases of integrated trait variation, and therefore has a broad applicability domain.


Subject(s)
Computational Biology/methods , Saccharomyces cerevisiae , Biological Variation, Population/genetics , Biological Variation, Population/physiology , Databases, Genetic , Fermentation/genetics , Glycolysis/genetics , Phenotype , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae/metabolism
7.
Plants (Basel) ; 9(7)2020 Jul 09.
Article in English | MEDLINE | ID: mdl-32660108

ABSTRACT

Heterosis (hybrid vigour) is a universal phenomenon of crucial agro-economic and evolutionary importance. We show that the most common heterosis coefficients do not properly measure deviation from additivity because they include both a component accounting for "real" heterosis and a term that is not related to heterosis, since it is derived solely from parental values. Therefore, these coefficients are inadequate whenever the aim of the study is to compare heterosis levels between different traits, environments, genetic backgrounds, or developmental stages, as these factors may affect not only the level of non-additivity, but also parental values. The only relevant coefficient for such comparisons is the so-called "potence ratio". Because most heterosis studies consider several traits/stages/environmental conditions, our observations support the use of the potence ratio, at least in non-agronomic contexts, because it is the only non-ambiguous heterosis coefficient.

8.
PLoS Biol ; 17(4): e3000214, 2019 04.
Article in English | MEDLINE | ID: mdl-31017902

ABSTRACT

Heterosis describes the phenotypic superiority of hybrids over their parents in traits related to agronomic performance and fitness. Understanding and predicting nonadditive inheritance such as heterosis is crucial for evolutionary biology as well as for plant and animal breeding. However, the physiological bases of heterosis remain debated. Moreover, empirical data in various species have shown that diverse genetic and molecular mechanisms are likely to explain heterosis, making it difficult to predict its emergence and amplitude from parental genotypes alone. In this study, we examined a model of physiological dominance initially proposed by Sewall Wright to explain the nonadditive inheritance of traits like metabolic fluxes at the cellular level. We evaluated Wright's model for two fitness-related traits at the whole-plant level, growth rate and fruit number, using 450 hybrids derived from crosses among natural accessions of A. thaliana. We found that allometric relationships between traits constrain phenotypic variation in a nonlinear and similar manner in hybrids and accessions. These allometric relationships behave predictably, explaining up to 75% of heterosis amplitude, while genetic distance among parents at best explains 7%. Thus, our findings are consistent with Wright's model of physiological dominance and suggest that the emergence of heterosis on plant performance is an intrinsic property of nonlinear relationships between traits. Furthermore, our study highlights the potential of a geometric approach of phenotypic relationships for predicting heterosis of major components of crop productivity and yield.


Subject(s)
Arabidopsis/genetics , Arabidopsis/metabolism , Biological Variation, Population , Crosses, Genetic , Genotype , Hybrid Vigor , Hybridization, Genetic , Models, Genetic , Phenotype
9.
Genetics ; 211(2): 741-756, 2019 02.
Article in English | MEDLINE | ID: mdl-30509954

ABSTRACT

Heterosis (hybrid vigor) and inbreeding depression, commonly considered as corollary phenomena, could nevertheless be decoupled under certain assumptions according to theoretical population genetics works. To explore this issue on real data, we analyzed the components of genetic variation in a population derived from a half-diallel cross between strains from Saccharomyces cerevisiae and S. uvarum, two related yeast species involved in alcoholic fermentation. A large number of phenotypic traits, either molecular (coming from quantitative proteomics) or related to fermentation and life history, were measured during alcoholic fermentation. Because the parental strains were included in the design, we were able to distinguish between inbreeding effects, which measure phenotypic differences between inbred and hybrids, and heterosis, which measures phenotypic differences between a specific hybrid and the other hybrids sharing a common parent. The sources of phenotypic variation differed depending on the temperature, indicating the predominance of genotype-by-environment interactions. Decomposing the total genetic variance into variances of additive (intra- and interspecific) effects, of inbreeding effects, and of heterosis (intra- and interspecific) effects, we showed that the distribution of variance components defined clear-cut groups of proteins and traits. Moreover, it was possible to cluster fermentation and life-history traits into most proteomic groups. Within groups, we observed positive, negative, or null correlations between the variances of heterosis and inbreeding effects. To our knowledge, such a decoupling had never been experimentally demonstrated. This result suggests that, despite a common evolutionary history of individuals within a species, the different types of traits have been subject to different selective pressures.


Subject(s)
Genome, Fungal , Hybrid Vigor , Inbreeding , Life History Traits , Proteome/genetics , Biological Variation, Population , Fermentation/genetics , Genetic Variation , Proteome/metabolism , Saccharomyces/genetics , Saccharomyces/metabolism
10.
Front Genet ; 9: 159, 2018.
Article in English | MEDLINE | ID: mdl-29868111

ABSTRACT

Heterosis, the superiority of hybrids over their parents for quantitative traits, represents a crucial issue in plant and animal breeding as well as evolutionary biology. Heterosis has given rise to countless genetic, genomic and molecular studies, but has rarely been investigated from the point of view of systems biology. We hypothesized that heterosis is an emergent property of living systems resulting from frequent concave relationships between genotypic variables and phenotypes, or between different phenotypic levels. We chose the enzyme-flux relationship as a model of the concave genotype-phenotype (GP) relationship, and showed that heterosis can be easily created in the laboratory. First, we reconstituted in vitro the upper part of glycolysis. We simulated genetic variability of enzyme activity by varying enzyme concentrations in test tubes. Mixing the content of "parental" tubes resulted in "hybrids," whose fluxes were compared to the parental fluxes. Frequent heterotic fluxes were observed, under conditions that were determined analytically and confirmed by computer simulation. Second, to test this model in a more realistic situation, we modeled the glycolysis/fermentation network in yeast by considering one input flux, glucose, and two output fluxes, glycerol and acetaldehyde. We simulated genetic variability by randomly drawing parental enzyme concentrations under various conditions, and computed the parental and hybrid fluxes using a system of differential equations. Again we found that a majority of hybrids exhibited positive heterosis for metabolic fluxes. Cases of negative heterosis were due to local convexity between certain enzyme concentrations and fluxes. In both approaches, heterosis was maximized when the parents were phenotypically close and when the distributions of parental enzyme concentrations were contrasted and constrained. These conclusions are not restricted to metabolic systems: they only depend on the concavity of the GP relationship, which is commonly observed at various levels of the phenotypic hierarchy, and could account for the pervasiveness of heterosis.

11.
Environ Microbiol ; 18(1): 100-17, 2016 Jan.
Article in English | MEDLINE | ID: mdl-25808978

ABSTRACT

To gain insights into the adaptation of the Escherichia coli species to different environments, we monitored protein abundances using quantitative proteomics and measurements of enzymatic activities of central metabolism in a set of five representative strains grown in four contrasted culture media including human urine. Two hundred and thirty seven proteins representative of the genome-scale metabolic network were identified and classified into pathway categories. We found that nutrient resources shape the general orientation of metabolism through coordinated changes in the average abundances of proteins and in enzymatic activities that all belong to the same pathway category. For example, each culture medium induces a specific oxidative response whatever the strain. On the contrary, differences between strains concern isolated proteins and enzymes within pathway categories in single environments. Our study confirms the predominance of genotype by environment interactions at the proteomic and enzyme activity levels. The buffering of genetic variation when considering life-history traits suggests a multiplicity of evolutionary strategies. For instance, the uropathogenic isolate CFT073 shows a deregulation of iron demand and increased oxidative stress response.


Subject(s)
Adaptation, Physiological/genetics , Escherichia coli/genetics , Iron/metabolism , Metabolic Networks and Pathways/genetics , Oxidative Stress/physiology , Biological Evolution , Culture Media/metabolism , Environment , Escherichia coli/isolation & purification , Escherichia coli/metabolism , Escherichia coli Proteins/classification , Escherichia coli Proteins/genetics , Genetic Variation/genetics , Genotype , Humans , Oxidation-Reduction , Phenotype , Proteomics
12.
Mol Cell Proteomics ; 14(8): 2056-71, 2015 Aug.
Article in English | MEDLINE | ID: mdl-25971257

ABSTRACT

Heterosis is a universal phenomenon that has major implications in evolution and is of tremendous agro-economic value. To study the molecular manifestations of heterosis and to find factors that maximize its strength, we implemented a large-scale proteomic experiment in yeast. We analyzed the inheritance of 1,396 proteins in 55 inter- and intraspecific hybrids obtained from Saccharomyces cerevisiae and S. uvarum that were grown in grape juice at two temperatures. We showed that the proportion of heterotic proteins was highly variable depending on the parental strain and on the temperature considered. For intraspecific hybrids, this proportion was higher at nonoptimal temperature. Unexpectedly, heterosis for protein abundance was strongly biased toward positive values in interspecific hybrids but not in intraspecific hybrids. Computer modeling showed that this observation could be accounted for by assuming concave relationships between protein abundances and their controlling factors, in line with the metabolic model of heterosis. These results point to nonlinear processes that could play a central role in heterosis.


Subject(s)
Hybrid Vigor , Proteomics/methods , Saccharomyces cerevisiae Proteins/metabolism , Saccharomyces cerevisiae/metabolism , Chromatography, Liquid , Computer Simulation , Gene Expression Regulation, Plant , Hybridization, Genetic , Nonlinear Dynamics , Principal Component Analysis , Proteome/metabolism , Saccharomyces cerevisiae/genetics , Species Specificity , Tandem Mass Spectrometry , Temperature , Transcription Factors/metabolism
13.
PLoS One ; 10(5): e0123834, 2015.
Article in English | MEDLINE | ID: mdl-25946464

ABSTRACT

Despite its biotechnological interest, hybridization, which can result in hybrid vigor, has not commonly been studied or exploited in the yeast genus. From a diallel design including 55 intra- and interspecific hybrids between Saccharomyces cerevisiae and S. uvarum grown at two temperatures in enological conditions, we analyzed as many as 35 fermentation traits with original statistical and modeling tools. We first showed that, depending on the types of trait--kinetics parameters, life-history traits, enological parameters and aromas -, the sources of variation (strain, temperature and strain * temperature effects) differed in a large extent. Then we compared globally three groups of hybrids and their parents at two growth temperatures: intraspecific hybrids S. cerevisiae * S. cerevisiae, intraspecific hybrids S. uvarum * S. uvarum and interspecific hybrids S. cerevisiae * S. uvarum. We found that hybridization could generate multi-trait phenotypes with improved oenological performances and better homeostasis with respect to temperature. These results could explain why interspecific hybridization is so common in natural and domesticated yeast, and open the way to applications for wine-making.


Subject(s)
Fermentation/genetics , Hybridization, Genetic , Phenotype , Saccharomyces cerevisiae/genetics , Homeostasis , Saccharomyces cerevisiae/metabolism
14.
Evolution ; 68(3): 772-790, 2014 Mar.
Article in English | MEDLINE | ID: mdl-24164389

ABSTRACT

Different organisms have independently and recurrently evolved similar phenotypic traits at different points throughout history. This phenotypic convergence may be caused by genotypic convergence and in addition, constrained by historical contingency. To investigate how convergence may be driven by selection in a particular environment and constrained by history, we analyzed nine life-history traits and four metabolic traits during an experimental evolution of six yeast strains in four different environments. In each of the environments, the population converged toward a different multivariate phenotype. However, the evolution of most traits, including fitness components, was constrained by history. Phenotypic convergence was partly associated with the selection of mutations in genes involved in the same pathway. By further investigating the convergence in one gene, BMH1, mutated in 20% of the evolved populations, we show that both the history and the environment influenced the types of mutations (missense/nonsense), their location within the gene itself, as well as their effects on multiple traits. However, these effects could not be easily predicted from ancestors' phylogeny or past selection. Combined, our data highlight the role of pleiotropy and epistasis in shaping a rugged fitness landscape.


Subject(s)
Evolution, Molecular , Gene-Environment Interaction , Saccharomyces cerevisiae/genetics , Selection, Genetic , 14-3-3 Proteins/genetics , Environment , Genotype , Mutation , Saccharomyces cerevisiae/metabolism , Saccharomyces cerevisiae Proteins/genetics
15.
PLoS One ; 8(9): e75121, 2013.
Article in English | MEDLINE | ID: mdl-24086452

ABSTRACT

In eukaryotes, mitochondrial DNA (mtDNA) has high rate of nucleotide substitution leading to different mitochondrial haplotypes called mitotypes. However, the impact of mitochondrial genetic variant on phenotypic variation has been poorly considered in microorganisms because mtDNA encodes very few genes compared to nuclear DNA, and also because mitochondrial inheritance is not uniparental. Here we propose original material to unravel mitotype impact on phenotype: we produced interspecific hybrids between S. cerevisiae and S. uvarum species, using fully homozygous diploid parental strains. For two different interspecific crosses involving different parental strains, we recovered 10 independent hybrids per cross, and allowed mtDNA fixation after around 80 generations. We developed PCR-based markers for the rapid discrimination of S. cerevisiae and S. uvarum mitochondrial DNA. For both crosses, we were able to isolate fully isogenic hybrids at the nuclear level, yet possessing either S. cerevisiae mtDNA (Sc-mtDNA) or S. uvarum mtDNA (Su-mtDNA). Under fermentative conditions, the mitotype has no phenotypic impact on fermentation kinetics and products, which was expected since mtDNA are not necessary for fermentative metabolism. Alternatively, under respiratory conditions, hybrids with Sc-mtDNA have higher population growth performance, associated with higher respiratory rate. Indeed, far from the hypothesis that mtDNA variation is neutral, our work shows that mitochondrial polymorphism can have a strong impact on fitness components and hence on the evolutionary fate of the yeast populations. We hypothesize that under fermentative conditions, hybrids may fix stochastically one or the other mt-DNA, while respiratory environments may increase the probability to fix Sc-mtDNA.


Subject(s)
Genetic Fitness/genetics , Genome, Mitochondrial/genetics , Hybridization, Genetic/genetics , Respiration/genetics , Saccharomyces/physiology , Analysis of Variance , Base Sequence , Cluster Analysis , Crosses, Genetic , DNA Primers/genetics , Fermentation , Flow Cytometry , Genetic Markers/genetics , Genotype , Microscopy, Electron , Molecular Sequence Data , Oxygen Consumption/physiology , Phylogeny , Population Dynamics , Saccharomyces/genetics , Sequence Analysis, DNA , Species Specificity
16.
Mol Biol Evol ; 30(6): 1368-83, 2013 Jun.
Article in English | MEDLINE | ID: mdl-23493259

ABSTRACT

Saccharomyces cerevisiae and S. uvarum are two domesticated species of the Saccharomyces sensu stricto clade that diverged around 100 Ma after whole-genome duplication. Both have retained many duplicated genes associated with glucose fermentation and are characterized by the ability to achieve grape must fermentation. Nevertheless, these two species differ for many other traits, indicating that they underwent different evolutionary histories. To determine how the evolutionary histories of S. cerevisiae and S. uvarum are mirrored on the proteome, we analyzed the genetic variability of the proteomes of domesticated strains of these two species by quantitative mass spectrometry. Overall, 445 proteins were quantified. Massive variations of protein abundances were found, that clearly differentiated the two species. Abundance variations in specific metabolic pathways could be related to phenotypic traits known to discriminate the two species. In addition, proteins encoded by duplicated genes were shown to be differently recruited in each species. Comparing the strain differentiation based on the proteome variability to those based on the phenotypic and genetic variations further revealed that the strains of S. uvarum and some strains of S. cerevisiae displayed similar fermentative performances despite strong proteomic and genomic differences. Altogether, these results indicate that the ability of S. cerevisae and S. uvarum to complete grape must fermentation arose through different evolutionary roads, involving different metabolic pathways and duplicated genes.


Subject(s)
Fungal Proteins/metabolism , Proteome/metabolism , Saccharomyces/metabolism , Vitis/microbiology , Wine/microbiology , Cluster Analysis , Evolution, Molecular , Fermentation , Fungal Proteins/chemistry , Fungal Proteins/genetics , Gene Duplication/genetics , Glucose/metabolism , Metabolic Networks and Pathways , Peptide Mapping , Proteome/chemistry , Proteome/genetics , Saccharomyces/genetics
17.
Mol Cell Proteomics ; 12(3): 720-35, 2013 Mar.
Article in English | MEDLINE | ID: mdl-23271801

ABSTRACT

Enzymes can be post-translationally modified, leading to isoforms with different properties. The phenotypic consequences of the quantitative variability of isoforms have never been studied. We used quantitative proteomics to dissect the relationships between the abundances of the enzymes and isoforms of alcoholic fermentation, metabolic traits, and growth-related traits in Saccharomyces cerevisiae. Although the enzymatic pool allocated to the fermentation proteome was constant over the culture media and the strains considered, there was variation in abundance of individual enzymes and sometimes much more of their isoforms, which suggests the existence of selective constraints on total protein abundance and trade-offs between isoforms. Variations in abundance of some isoforms were significantly associated to metabolic traits and growth-related traits. In particular, cell size and maximum population size were highly correlated to the degree of N-terminal acetylation of the alcohol dehydrogenase. The fermentation proteome was found to be shaped by human selection, through the differential targeting of a few isoforms for each food-processing origin of strains. These results highlight the importance of post-translational modifications in the diversity of metabolic and life-history traits.


Subject(s)
Genetic Variation , Protein Processing, Post-Translational , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae/metabolism , Alcohol Dehydrogenase/genetics , Alcohol Dehydrogenase/metabolism , Amino Acid Sequence , Chromatography, High Pressure Liquid , Cluster Analysis , Electrophoresis, Gel, Two-Dimensional , Fermentation , Food Microbiology/methods , Humans , Isoenzymes/genetics , Isoenzymes/metabolism , Mass Spectrometry/methods , Metabolic Networks and Pathways , Molecular Sequence Data , Phenotype , Phylogeny , Proteome/classification , Proteome/genetics , Proteome/metabolism , Proteomics/methods , Saccharomyces cerevisiae/classification , Saccharomyces cerevisiae Proteins/genetics , Saccharomyces cerevisiae Proteins/metabolism , Sequence Homology, Amino Acid
18.
Proteomics ; 12(18): 2797-801, 2012 Sep.
Article in English | MEDLINE | ID: mdl-22833229

ABSTRACT

Inferring protein abundances from peptide intensities is the key step in quantitative proteomics. The inference is necessarily more accurate when many peptides are taken into account for a given protein. Yet, the information brought by the peptides shared by different proteins is commonly discarded. We propose a statistical framework based on a hierarchical modeling to include that information. Our methodology, based on a simultaneous analysis of all the quantified peptides, handles the biological and technical errors as well as the peptide effect. In addition, we propose a practical implementation suitable for analyzing large data sets. Compared to a method based on the analysis of one protein at a time (that does not include shared peptides), our methodology proved to be far more reliable for estimating protein abundances and testing abundance changes. The source codes are available at http://pappso.inra.fr/bioinfo/all_p/.


Subject(s)
Peptides/analysis , Proteins/chemistry , Proteomics/methods , Mass Spectrometry/methods , Models, Statistical
19.
Appl Environ Microbiol ; 77(8): 2772-84, 2011 Apr.
Article in English | MEDLINE | ID: mdl-21357433

ABSTRACT

Alcoholic fermentation (AF) conducted by Saccharomyces cerevisiae has been exploited for millennia in three important human food processes: beer and wine production and bread leavening. Most of the efforts to understand and improve AF have been made separately for each process, with strains that are supposedly well adapted. In this work, we propose a first comparison of yeast AFs in three synthetic media mimicking the dough/wort/grape must found in baking, brewing, and wine making. The fermentative behaviors of nine food-processing strains were evaluated in these media, at the cellular, populational, and biotechnological levels. A large variation in the measured traits was observed, with medium effects usually being greater than the strain effects. The results suggest that human selection targeted the ability to complete fermentation for wine strains and trehalose content for beer strains. Apart from these features, the food origin of the strains did not significantly affect AF, suggesting that an improvement program for a specific food processing industry could exploit the variability of strains used in other industries. Glucose utilization was analyzed, revealing plastic but also genetic variation in fermentation products and indicating that artificial selection could be used to modify the production of glycerol, acetate, etc. The major result was that the overall maximum CO(2) production rate (V(max)) was not related to the maximum CO(2) production rate per cell. Instead, a highly significant correlation between V(max) and the maximum population size was observed in all three media, indicating that human selection targeted the efficiency of cellular reproduction rather than metabolic efficiency. This result opens the way to new strategies for yeast improvement.


Subject(s)
Fermentation , Saccharomyces cerevisiae/metabolism , Beer/microbiology , Carbon Dioxide/metabolism , Food Microbiology , Gene Expression Regulation , Genetic Variation , Glucose/metabolism , Saccharomyces cerevisiae/genetics , Wine/microbiology
20.
Appl Environ Microbiol ; 77(2): 452-9, 2011 Jan.
Article in English | MEDLINE | ID: mdl-21075872

ABSTRACT

Adaptation is the process whereby a population or species becomes better fitted to its habitat through modifications of various life history traits which can be positively or negatively correlated. The molecular factors underlying these covariations remain to be elucidated. Using Saccharomyces cerevisiae as a model system, we have investigated the effects on life history traits of varying the dosage of genes involved in the transformation of resources into energy. Changing gene dosage for each of three glycolytic enzyme genes (hexokinase 2, phosphoglucose isomerase, and fructose-1,6-bisphosphate aldolase) resulted in variation in enzyme activities, glucose consumption rate, and life history traits (growth rate, carrying capacity, and cell size). However, the range of effects depended on which enzyme was expressed differently. Most interestingly, these changes revealed a genetic trade-off between carrying capacity and cell size, supporting the discovery of two extreme life history strategies already described in yeast populations: the "ants," which have lower glycolytic gene dosage, take up glucose slowly, and have a small cell size but reach a high carrying capacity, and the "grasshoppers," which have higher glycolytic gene dosage, consume glucose more rapidly, and allocate it to a larger cell size but reach a lower carrying capacity. These results demonstrate antagonist pleiotropy for glycolytic genes and show that altered dosage of a single gene drives a switch between two life history strategies in yeast.


Subject(s)
Enzymes/genetics , Gene Dosage , Glycolysis , Metabolic Networks and Pathways/genetics , Saccharomyces cerevisiae/growth & development , Saccharomyces cerevisiae/genetics , Energy Metabolism , Enzymes/metabolism , Genes, Fungal , Glucose/metabolism , Saccharomyces cerevisiae/cytology , Saccharomyces cerevisiae/metabolism , Saccharomyces cerevisiae Proteins/genetics , Saccharomyces cerevisiae Proteins/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...