Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
J Magn Reson Imaging ; 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38949101

ABSTRACT

BACKGROUND: Myocardial T1-rho (T1ρ) mapping is a promising method for identifying and quantifying myocardial injuries without contrast agents, but its clinical use is hindered by the lack of dedicated analysis tools. PURPOSE: To explore the feasibility of clinically integrated artificial intelligence-driven analysis for efficient and automated myocardial T1ρ mapping. STUDY TYPE: Retrospective. POPULATION: Five hundred seventy-three patients divided into a training (N = 500) and a test set (N = 73) including ischemic and nonischemic cases. FIELD STRENGTH/SEQUENCE: Single-shot bSSFP T1ρ mapping sequence at 1.5 T. ASSESSMENT: The automated process included: left ventricular (LV) wall segmentation, right ventricular insertion point detection and creation of a 16-segment model for segmental T1ρ value analysis. Two radiologists (20 and 7 years of MRI experience) provided ground truth annotations. Interobserver variability and segmentation quality were assessed using the Dice coefficient with manual segmentation as reference standard. Global and segmental T1ρ values were compared. Processing times were measured. STATISTICAL TESTS: Intraclass correlation coefficients (ICCs) and Bland-Altman analysis (bias ±2SD); Paired Student's t-tests and one-way ANOVA. A P value <0.05 was considered significant. RESULTS: The automated approach significantly reduced processing time (3 seconds vs. 1 minute 51 seconds ± 22 seconds). In the test set, automated LV wall segmentation closely matched manual results (Dice 81.9% ± 9.0) and closely aligned with interobserver segmentation (Dice 82.2% ± 6.5). Excellent ICCs were achieved on a patient basis (0.94 [95% CI: 0.91 to 0.96]) with bias of -0.93 cm2 ± 6.60. There was no significant difference in global T1ρ values between manual (54.9 msec ± 4.6; 95% CI: 53.8 to 56.0 msec, range: 46.6-70.9 msec) and automated processing (55.4 msec ± 5.1; 95% CI: 54.2 to 56.6 msec; range: 46.4-75.1 msec; P = 0.099). The pipeline demonstrated a high level of agreement with manual-derived T1ρ values at the patient level (ICC = 0.85; bias +0.52 msec ± 5.18). No significant differences in myocardial T1ρ values were found between methods across the 16 segments (P = 0.75). DATA CONCLUSION: Automated myocardial T1ρ mapping shows promise for the rapid and noninvasive assessment of heart disease. EVIDENCE LEVEL: 3 TECHNICAL EFFICACY: Stage 1.

2.
MAGMA ; 2024 Jun 22.
Article in English | MEDLINE | ID: mdl-38907767

ABSTRACT

Artificial intelligence (AI) integration in cardiac magnetic resonance imaging presents new and exciting avenues for advancing patient care, automating post-processing tasks, and enhancing diagnostic precision and outcomes. The use of AI significantly streamlines the examination workflow through the reduction of acquisition and postprocessing durations, coupled with the automation of scan planning and acquisition parameters selection. This has led to a notable improvement in examination workflow efficiency, a reduction in operator variability, and an enhancement in overall image quality. Importantly, AI unlocks new possibilities to achieve spatial resolutions that were previously unattainable in patients. Furthermore, the potential for low-dose and contrast-agent-free imaging represents a stride toward safer and more patient-friendly diagnostic procedures. Beyond these benefits, AI facilitates precise risk stratification and prognosis evaluation by adeptly analysing extensive datasets. This comprehensive review article explores recent applications of AI in the realm of cardiac magnetic resonance imaging, offering insights into its transformative potential in the field.

3.
Magn Reson Imaging ; 109: 256-263, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38522623

ABSTRACT

PURPOSE: Joint bright- and black-blood MRI techniques provide improved scar localization and contrast. Black-blood contrast is obtained after the visual selection of an optimal inversion time (TI) which often results in uncertainties, inter- and intra-observer variability and increased workload. In this work, we propose an artificial intelligence-based algorithm to enable fully automated TI selection and simplify myocardial scar imaging. METHODS: The proposed algorithm first localizes the left ventricle using a U-Net architecture. The localized left cavity centroid is extracted and a squared region of interest ("focus box") is created around the resulting pixel. The focus box is then propagated on each image and the sum of the pixel intensity inside is computed. The smallest sum corresponds to the image with the lowest intensity signal within the blood pool and healthy myocardium, which will provide an ideal scar-to-blood contrast. The image's corresponding TI is considered optimal. The U-Net was trained to segment the epicardium in 177 patients with binary cross-entropy loss. The algorithm was validated retrospectively in 152 patients, and the agreement between the algorithm and two magnetic resonance (MR) operators' prediction of TI values was calculated using the Fleiss' kappa coefficient. Thirty focus box sizes, ranging from 2.3mm2 to 20.3cm2, were tested. Processing times were measured. RESULTS: The U-Net's Dice score was 93.0 ± 0.1%. The proposed algorithm extracted TI values in 2.7 ± 0.1 s per patient (vs. 16.0 ± 8.5 s for the operator). An agreement between the algorithm's prediction and the MR operators' prediction was found in 137/152 patients (κ= 0.89), for an optimal focus box of size 2.3cm2. CONCLUSION: The proposed fully-automated algorithm has potential of reducing uncertainties, variability, and workload inherent to manual approaches with promise for future clinical implementation for joint bright- and black-blood MRI.


Subject(s)
Contrast Media , Gadolinium , Humans , Retrospective Studies , Cicatrix/diagnostic imaging , Artificial Intelligence , Myocardium/pathology , Magnetic Resonance Imaging/methods
SELECTION OF CITATIONS
SEARCH DETAIL
...