Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 18 de 18
Filter
Add more filters










Publication year range
1.
J Comput Aided Mol Des ; 35(8): 911-921, 2021 08.
Article in English | MEDLINE | ID: mdl-34264476

ABSTRACT

Free energy drives a wide range of molecular processes such as solvation, binding, chemical reactions and conformational change. Given the central importance of binding, a wide range of methods exist to calculate it, whether based on scoring functions, machine-learning, classical or electronic structure methods, alchemy, or explicit evaluation of energy and entropy. Here we present a new energy-entropy (EE) method to calculate the host-guest binding free energy directly from molecular dynamics (MD) simulation. Entropy is evaluated using Multiscale Cell Correlation (MCC) which uses force and torque covariance and contacts at two different length scales. The method is tested on a series of seven host-guest complexes in the SAMPL8 (Statistical Assessment of the Modeling of Proteins and Ligands) "Drugs of Abuse" Blind Challenge. The EE-MCC binding free energies are found to agree with experiment with an average error of 0.9 kcal mol-1. MCC makes clear the origin of the entropy changes, showing that the large loss of positional, orientational, and to a lesser extent conformational entropy of each binding guest is compensated for by a gain in orientational entropy of water released to bulk, combined with smaller decreases in vibrational entropy of the host, guest and contacting water.


Subject(s)
Entropy , Models, Statistical , Molecular Dynamics Simulation , Proteins/chemistry , Proteins/metabolism , Humans , Ligands , Models, Chemical , Physical Phenomena , Protein Binding , Thermodynamics
2.
J Am Chem Soc ; 127(22): 8204-13, 2005 Jun 08.
Article in English | MEDLINE | ID: mdl-15926850

ABSTRACT

The report uses density functional theory to address the mechanism of heme degradation by the enzyme heme oxygenase (HO) using a model ferric hydroperoxide complex. HO is known to trap heme molecules and degrade them to maintain iron homeostasis in the biosystem. The degradation is initiated by complexation of the heme, then formation of the iron-hydroperoxo species, which subsequently oxidizes the meso position of the porphyrin by hydroxylation, thereby enabling eventually the cleavage of the porphyrin ring. Kinetic isotope effect studies indicate that the mechanism is assisted by general acid catalysis, via a chain of water molecules, and that all the events occur in concert. However, previous theoretical treatments indicated that the concerted mechanism has a high barrier, much higher than an alternative mechanism that is initiated by O-O bond homolysis of iron-hydroperoxide. The present contribution studies the stepwise and concerted acid-catalyzed mechanisms using H(3)O(+)(H(2)O)(n)(), n = 0-2. The effect of the acid strength is tested using the H(4)N(+)(H(2)O)(2) cluster and a fully protonated ferric hydroperoxide. All the calculations show that a stepwise mechanism that involves proton relay and O-O homolysis, in the rate-determining step, has a much lower barrier (>10 kcal/mol) than the corresponding fully concerted mechanism. The best fit of the calculated solvent kinetic isotope effect, to the experimental data, is obtained for the H(3)O(+)(H(2)O)(2) cluster. The calculated alpha-deuterium secondary kinetic isotope effect is inverse (0.95-0.98), but much less so than the experimental value (0.7). Possible reasons for this quantitative difference are discussed. Some probes are suggested that may enable experiment to distinguish the stepwise from the concerted mechanism.


Subject(s)
Ferric Compounds/chemistry , Heme Oxygenase (Decyclizing)/chemistry , Heme Oxygenase (Decyclizing)/metabolism , Hydrogen Peroxide/chemistry , Porphyrins/chemistry , Biomimetic Materials/chemistry , Heme/chemistry , Heme/metabolism , Hydroxylation , Kinetics , Models, Chemical , Models, Molecular , Thermodynamics
5.
J Biol Inorg Chem ; 9(6): 661-8, 2004 Sep.
Article in English | MEDLINE | ID: mdl-15365903

ABSTRACT

Density functional theoretical studies of monooxygenation reactivity of the high-valent oxoiron(IV) porphyrin cation-radical compound of cytochrome P450, the so-called Compound I, and of its precursor, the ferric(III)-hydroperoxide species, are described. The degeneracy of the spin states of Compound I, its electron deficiency, and dense orbital manifold lead to two-state and multi-state reactivity scenarios and may thereby create reactivity patterns as though belonging to two or more different oxidants. Most of the controversies in the experimental data are reconciled using Compound I as the sole competent oxidant. Theory finds ferric(III)-hydroperoxide to be a very sluggish oxidant, noncompetitive with Compound I. If and when Compound I is absent, P450 oxidation will logically proceed by another form, but this has to be more reactive than ferric(III)-hydroperoxide. Theoretical studies are conducted to pinpoint such an oxidant for P450.


Subject(s)
Cytochrome P-450 Enzyme System/chemistry , Cytochrome P-450 Enzyme System/metabolism , Oxidants/chemistry , Hydroxylation , Metalloporphyrins/chemistry , Metalloporphyrins/metabolism , Models, Chemical , Organometallic Compounds/chemistry , Organometallic Compounds/metabolism , Oxidants/metabolism , Oxidation-Reduction
7.
J Am Chem Soc ; 126(16): 5072-3, 2004 Apr 28.
Article in English | MEDLINE | ID: mdl-15099082

ABSTRACT

The economy of dioxygen consumption by enzymes constitutes a fundamental problem in enzymatic chemistry (ref 1). Sometimes, the enzyme converts ALL the oxygen into water, without affecting the organic substrate, thereby acting as an "oxidase" (ref 1). Other times, the enzyme converts all the oxygen into water and causes desaturation in the substrate, thus exhibiting a mixed function as both "oxidase" and "dehydrogenase" (refs 2-5). The present paper describes density functional calculations demonstrating that the oxidase-dehydrogenase mixed activity occurs from the cationic intermediate species and requires electro-steric inhibition of the rebound process. Furthermore, the calculations reveal that the carbocation is formally nascent from an excited state of the active species of the enzyme (2Cpd I), in which the Fe=O moiety is singlet coupled as in the 1Deltag state of dioxygen! Thus, our results resolve an important mechanism and reveal the factors that underlie its observability.


Subject(s)
Cytochrome P-450 Enzyme System/metabolism , Oxidoreductases/metabolism , Catalysis , Iron/chemistry , Iron/metabolism , Oxidation-Reduction , Oxygen/chemistry , Oxygen/metabolism
8.
J Am Chem Soc ; 126(6): 1907-20, 2004 Feb 18.
Article in English | MEDLINE | ID: mdl-14871124

ABSTRACT

There is an ongoing and tantalizing controversy regarding the mechanism of a key process in nature, C-H hydroxylation, by the enzyme cytochrome P450 (Auclaire, K.; Hu, Z.; Little, D. M.; Ortiz de Montellano, P. R.; Groves, J. T. J. Am. Chem. Soc. 2002, 124, 6020-6027. Newcomb, M.; Aebisher, D.; Shen, R.; Esala, R.; Chandrasena, P.; Hollenberg, P. F.; Coon, M. J. J. Am. Chem. Soc. 2003, 125, 6064-6065). To definitely resolve this controversy, theory must first address the actual systems that have been used by experiment, and that generated the controversy. This is done in the present paper, which constitutes the first extensive theoretical study of such two experimental systems, trans-2-phenylmethyl-cyclopropane (1) and trans-2-phenyl-iso-propylcyclopropane (4). The theoretical study of these substrates reveals that the only low energy pathway for C-H hydroxylation is the two-state rebound mechanism described originally for methane hydroxylation (Ogliaro, F.; Harris, N.; Cohen, S.; Filatov, M.; de Visser, S. P.; Shaik, S. J. Am. Chem. Soc. 2000, 122, 8977-8989). The paper shows that the scenario of a two-state rebound mechanism accommodates much of the experimental data. The computational results provide a good match to experimental results concerning the very different extents of rearrangement for 1 (20-30%) vs 4 (virtually none), lead to product isotope effect for the reaction of 1, in the direction of the experimental result, and predict as well the observed metabolic switching from methyl to phenyl hydroxylation, which occurs upon deuteration of the methyl group. Furthermore, the study reveals that an intimate ion pair species involving an alkyl carbocation derived from 4 gives no rearranged products, again in accord with experiment. This coherent match between theory and experiment cannot be merely accidental; it comes close to being aproof that the actual mechanism of C-H hydroxylation involves the two-state reactivity revealed by theory. Analysis of the rearrangement modes of the carbocations derived from 1 and 4 excludes the participation of free carbocations during the hydroxylation of these substrates. Finally, the mechanistic significance of product isotope effect (different isotope effects for the rearranged and unrearranged alcohol products) is analyzed. It is shown to be a sensitive probe of two-state reactivity; the size of the intrinsic product isotope effect and its direction reveal the structural differences of the hydrogen abstraction transition states in the low-spin vs high-spin reaction manifolds.


Subject(s)
Cytochrome P-450 Enzyme System/chemistry , Cytochrome P-450 Enzyme System/metabolism , Cyclopropanes/chemistry , Cyclopropanes/metabolism , Hydroxylation , Kinetics , Models, Molecular , Thermodynamics
9.
J Am Chem Soc ; 125(40): 12116-7, 2003 Oct 08.
Article in English | MEDLINE | ID: mdl-14518997

ABSTRACT

We have demonstrated that a polyfluorinated alcohol, 2,2,2-trifluoroethanol, solvent enables haloperoxidase type activity and the oxychlorination of arenes (benzene and its alkylated derivatives) without a metal catalyst. The polyfluorinated alcohol has a dual function; it catalyzes electrophilic chlorination of less reactive arenes by several orders of magnitude and oxidation of chloride at lower H+ concentrations. DFT calculations show that a complementary charge template in the transition state explains the catalysis of the electrophilic chlorination.

10.
J Am Chem Soc ; 125(43): 13024-5, 2003 Oct 29.
Article in English | MEDLINE | ID: mdl-14570465

ABSTRACT

C-H hydroxylation is a fundamental process. In Nature it is catalyzed by the enzyme cytochrome P450, in a still-debated mechanism that poses a major intellectual challenge for both experiment and theory; currently, the opinions keep swaying between the original single-state rebound mechanism, a two-oxidant mechanism (where ferric peroxide participates as a second oxidant, in addition to the primary active species, the high-valent iron-oxo species), and two-state reactivity (TSR) mechanism (where two spin states are involved). Recent product isotope effect (PIE) measurements for the trans-2-phenyl-methyl cyclopropane probe (1), led Newcomb and co-workers (Newcomb, M.; Aebisher, D.; Shen, R.; Esala, R.; Chandrasena, P.; Hollenberg, P.; Coon, M. J. J. Am. Chem. Soc. 2003, 125, 6064-6065) to rule out TSR in favor of the two-oxidant scenario, since the direction of the PIE was at odds with the one predicted from calculations on methane hydroxylation. The present report describes a density functional theoretical study of C-H hydroxylation of the Newcomb probe, 1, leading to rearranged (3) and unrearranged (2) products. Our study shows that the reaction occurs via TSR in which the high-spin pathway gives dominant rearranged products, whereas the low-spin pathway favors unrearranged products. The calculated PIE(2/3) values based on TSR are found to be in excellent agreement with the experimental data of Newcomb and co-workers. This match between experiment and theory makes a strong case that the reaction occurs via TSR mechanism.


Subject(s)
Cyclopropanes/chemistry , Cyclopropanes/metabolism , Cytochrome P-450 Enzyme System/chemistry , Cytochrome P-450 Enzyme System/metabolism , Deuterium/chemistry , Deuterium Exchange Measurement , Ferric Compounds/chemistry , Hydrogen Peroxide/chemistry , Hydroxylation , Kinetics , Thermodynamics
11.
J Am Chem Soc ; 125(29): 8698-9, 2003 Jul 23.
Article in English | MEDLINE | ID: mdl-12862444

ABSTRACT

Density functional calculations were performed on the sulfoxidation reaction by a model compound I (Cpd I) of cytochrome P450. By contrast to previous alkane hydroxylation studies, which exhibit a dominant low-spin (LS) pathway, the sulfoxidation follows a dominant high-spin (HS) reaction. Thus, competing hydroxylation and sulfoxidation processes as observed for instance by Jones et al. (Volz, T. J.; Rock, D. A.; Jones, J. P. J. Am. Chem. Soc. 2002, 124, 9724) are the result of a two-state reactivity scenario, whereby the hydroxylation originates from the LS pathway and the sulfoxidation from the HS pathway. In this manner, two spin states of a single oxidant (Cpd I) can be disguised as two different oxidants. The calculations rule out the possibility that a second oxidant (the ferric peroxide, Cpd 0 species) interferes in the observed results of Jones et al.


Subject(s)
Cytochrome P-450 Enzyme System/chemistry , Oxidants/chemistry , Sulfoxides/chemistry , Cytochrome P-450 Enzyme System/metabolism , Iron Compounds/chemistry , Porphyrins/chemistry , Thermodynamics
12.
J Org Chem ; 68(7): 2903-12, 2003 Apr 04.
Article in English | MEDLINE | ID: mdl-12662068

ABSTRACT

Experimental observations show that direct olefin epoxidation by H(2)O(2), which is extremely sluggish otherwise, occurs in fluorinated alcohol (R(f)OH) solutions under mild conditions requiring no additional catalysts. Theoretical calculations of ethene and propene epoxidation by H(2)O(2) in the gas phase and in the presence of methanol and of two fluorinated alcohols, presented in this paper, show that the fluoro alcohol itself acts as a catalyst for the reaction by providing a template that stabilizes specifically the transition state (TS) of the reaction. Thus, much like an enzyme, the fluoro alcohol provides a complementary charge template that leads to the reduction of the barrier by 5-8 kcal mol(-)(1). Additionally, the fluoro alcohol template keeps the departing OH and hydroxyalkenyl moieties in close proximity and, by polarizing them, facilitates the hydrogen migration from the latter to form water and the epoxide product. The reduced activation energy and structural confinement of the TS over the fluoro alcohol template render the epoxidation reaction observable under mild synthetic conditions.

13.
Curr Opin Chem Biol ; 6(5): 556-67, 2002 Oct.
Article in English | MEDLINE | ID: mdl-12413538

ABSTRACT

Recent computational studies of alkane hydroxylation and alkene epoxidation by a model active species of the enzyme cytochrome P-450 reveal a two-state reactivity (TSR) scenario in which the information content of the product distribution is determined jointly by two states. TSR is used to reconcile the dilemma of the consensus 'rebound mechanism' of alkane hydroxylation, which emerged from experimental studies of ultra-fast radical clocks. The dilemma, stated succinctly as 'radicals are both present and absent and the rebound mechanism is both right and wrong', is simply understood once one is cognizant that the mechanism operates by two states, one low-spin (LS) the other high-spin (HS). In both states, bond activation proceeds in a manner akin to the rebound mechanism, but the LS mechanism is effectively concerted, whereas the HS is stepwise with incursion of radical intermediates.


Subject(s)
Cytochrome P-450 Enzyme System/chemistry , Epoxy Compounds/chemistry , Models, Chemical , Alkanes/chemistry , Cytochrome P-450 Enzyme System/metabolism , Ethylenes/chemistry , Free Radicals/chemistry , Hydroxylation , Iron/chemistry , Iron/metabolism , Kinetics , Ligands , Oxidation-Reduction , Porphyrins/chemistry , Stereoisomerism , Thermodynamics
14.
J Inorg Biochem ; 91(4): 554-67, 2002 Sep 20.
Article in English | MEDLINE | ID: mdl-12237222

ABSTRACT

The 'push' effect of the thiolate ligand in cytochrome P450 is investigated using density functional calculations. Theory supports Dawson's postulate that the 'push' effect is crucial for the heterolytic O-O bond cleavage of ferric-peroxide, as well as for controlling the Fe(III)/Fe(II) redox process and gating the catalytic cycle. Two energetic factors that contribute to the 'push' effect are revealed. The dominant one is the field factor (DeltaE(field)=54-103 kcal/mol) that accounts for the classical electrostatic repulsion with the negative charge of thiolate. The smaller factor is a quantum mechanical effect (DeltaE(QM)(sigma)=39 kcal/mol, DeltaE(QM)(pi)=4 kcal/mol), which is associated with the sigma- and pi-donor capabilities of thiolate. The effects of ligand replacement, changes in hydrogen bonding and dielectric screening are discussed in term of these quantities. In an environment with a dielectric constant of 5.7, the total 'push' effect is reduced to 29-33 kcal/mol. Manifestations of the 'push' effect on other properties of thiolate enzymes are discussed.


Subject(s)
Cytochrome P-450 Enzyme System/chemistry , Cytochrome P-450 Enzyme System/metabolism , Sulfhydryl Compounds/metabolism , Hydrogen Peroxide/metabolism , Kinetics , Ligands , Models, Theoretical , Oxygen/metabolism , Substrate Specificity
18.
Angew Chem Int Ed Engl ; 40(15): 2874-2878, 2001 Aug 03.
Article in English | MEDLINE | ID: mdl-29711990

ABSTRACT

Chameleon states: the ruthenium and iron metalloporphyrin analogues of compound I of cytochrome P450 (1; L = thiolate) possess low-lying states that change their electronic structure with solvent polarization. The ground state of the ruthenium complex is a low-spin electrophilic state, whereas the ground state of the iron complex is triradicaloid.

SELECTION OF CITATIONS
SEARCH DETAIL
...