Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Rep ; 14(1): 15963, 2024 Jul 10.
Article in English | MEDLINE | ID: mdl-38987323

ABSTRACT

The recent COVID-19 pandemic has raised interest in efficient air disinfection solutions. The application of germicidal ultraviolet (GUV) irradiation is an excellent contender to prevent airborne transmission of COVID-19, as well as other existing and future infectious airborne diseases. While GUV has already been proven effective in inactivating SARS-CoV-2, quantitative data on UV susceptibility and dose requirements, needed to predict and optimize the performance of GUV solutions, is still limited. In this study, the UV susceptibility of aerosolized SARS-CoV-2 to 254 nm ultraviolet (UV) irradiation is investigated. This is done by employing 3D computational fluid dynamics based simulations of SARS-CoV-2 inactivation in a test chamber equipped with an upper-room UV-C luminaire and comparing the results to previously published measurements performed in the same test chamber. The UV susceptibility found in this study is (0.6 ± 0.2) m2/J, which is equivalent to a D90 dose between 3 and 6 J/m2. These values are in the same range as previous estimations based on other corona viruses and inactivation data reported in literature.


Subject(s)
COVID-19 , Disinfection , SARS-CoV-2 , Ultraviolet Rays , SARS-CoV-2/radiation effects , Disinfection/methods , COVID-19/prevention & control , COVID-19/virology , COVID-19/transmission , Humans , Aerosols , Hydrodynamics , Computer Simulation , Virus Inactivation/radiation effects
SELECTION OF CITATIONS
SEARCH DETAIL
...