Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Clin Pharmacol Ther ; 114(1): 137-147, 2023 07.
Article in English | MEDLINE | ID: mdl-37042227

ABSTRACT

Realistic models predicting hepatobiliary processes in health and disease are lacking. We therefore aimed to develop a physiologically relevant human liver model consisting of normothermic machine perfusion (NMP) of explanted diseased human livers that can assess hepatic extraction, clearance, biliary excretion, and drug-drug interaction (DDI). Eleven livers were included in the study, seven with a cirrhotic and four with a noncirrhotic disease background. After explantation of the diseased liver, NMP was initiated. After 120 minutes of perfusion, a drug cocktail (rosuvastatin, digoxin, metformin, and furosemide; OATP1B1/1B3, P-gp, BCRP, and OCT1 model compounds) was administered to the portal vein and 120 minutes later, a second bolus of the drug cocktail was co-administered with perpetrator drugs to study relevant DDIs. The explanted livers showed good viability and functionality during 360 minutes of NMP. Hepatic extraction ratios close to in vivo reported values were measured. Hepatic clearance of rosuvastatin and digoxin showed to be the most affected by cirrhosis with an increase in maximum plasma concentration (Cmax ) of 11.50 and 2.89 times, respectively, compared with noncirrhotic livers. No major differences were observed for metformin and furosemide. Interaction of rosuvastatin or digoxin with perpetrator drugs were more pronounced in noncirrhotic livers compared with cirrhotic livers. Our results demonstrated that NMP of human diseased explanted livers is an excellent model to assess hepatic extraction, clearance, biliary excretion, and DDI. Gaining insight into pharmacokinetic profiles of OATP1B1/1B3, P-gp, BCRP, and OCT1 model compounds is a first step toward studying transporter functions in diseased livers.


Subject(s)
Furosemide , Metformin , Humans , Rosuvastatin Calcium/pharmacokinetics , Furosemide/pharmacokinetics , Hepatobiliary Elimination , ATP Binding Cassette Transporter, Subfamily G, Member 2/metabolism , Neoplasm Proteins/metabolism , Membrane Transport Proteins/metabolism , Liver/metabolism , Liver Cirrhosis , Metformin/pharmacokinetics , Digoxin/pharmacokinetics , Drug Interactions
2.
Clin Pharmacol Ther ; 108(5): 1003-1009, 2020 11.
Article in English | MEDLINE | ID: mdl-32386327

ABSTRACT

Growth and development affect drug-metabolizing enzyme activity thus could alter the metabolic profile of a drug. Traditional studies to create metabolite profiles and study the routes of excretion are unethical in children due to the high radioactive burden. To overcome this challenge, we aimed to show the feasibility of an absorption, distribution, metabolism, and excretion (ADME) study using a [14 C]midazolam microtracer as proof of concept in children. Twelve stable, critically ill children received an oral [14 C]midazolam microtracer (20 ng/kg; 60 Bq/kg) while receiving intravenous therapeutic midazolam. Blood was sampled up to 24 hours after dosing. A time-averaged plasma pool per patient was prepared reflecting the mean area under the curve plasma level, and subsequently one pool for each age group (0-1 month, 1-6 months, 0.5-2 years, and 2-6 years). For each pool [14 C]levels were quantified by accelerator mass spectrometry, and metabolites identified by high resolution mass spectrometry. Urine and feces (n = 4) were collected up to 72 hours. The approach resulted in sufficient sensitivity to quantify individual metabolites in chromatograms. [14 C]1-OH-midazolam-glucuronide was most abundant in all but one age group, followed by unchanged [14 C]midazolam and [14 C]1-OH-midazolam. The small proportion of unspecified metabolites most probably includes [14 C]midazolam-glucuronide and [14 C]4-OH-midazolam. Excretion was mainly in urine; the total recovery in urine and feces was 77-94%. This first pediatric pilot study makes clear that using a [14 C]midazolam microtracer is feasible and safe to generate metabolite profiles and study recovery in children. This approach is promising for first-in-child studies to delineate age-related variation in drug metabolite profiles.


Subject(s)
Carbon Radioisotopes/pharmacokinetics , Hypnotics and Sedatives/pharmacokinetics , Midazolam/pharmacokinetics , Administration, Intravenous , Administration, Oral , Age Factors , Biotransformation , Carbon Radioisotopes/administration & dosage , Carbon Radioisotopes/blood , Carbon Radioisotopes/urine , Child , Child, Preschool , Critical Illness , Feasibility Studies , Feces/chemistry , Female , Humans , Hypnotics and Sedatives/administration & dosage , Hypnotics and Sedatives/blood , Hypnotics and Sedatives/urine , Infant , Infant, Newborn , Intensive Care Units, Pediatric , Intestinal Elimination , Male , Mass Spectrometry , Midazolam/administration & dosage , Midazolam/blood , Midazolam/urine , Proof of Concept Study , Renal Elimination
3.
Am J Clin Nutr ; 76(3): 595-603, 2002 Sep.
Article in English | MEDLINE | ID: mdl-12198005

ABSTRACT

BACKGROUND: Macular pigment (MP), concentrated in the central area of the retina, contains the carotenoids lutein and zeaxanthin. A low MP density could be a risk factor for age-related macular degeneration. Little information is available regarding MP density in relation to serum lutein and zeaxanthin and adipose lutein concentrations in a general population. OBJECTIVE: The objective was to investigate the associations between MP density and serum lutein, serum zeaxanthin, and adipose lutein, taking into account potential confounders in a population. DESIGN: Volunteers (n = 376) aged 18-75 y were recruited. In a cross-sectional design, serum (n = 376) and adipose tissue (n = 187) were analyzed for carotenoids, and MP density was measured by spectral fundus reflectance. RESULTS: Mean MP density in the total study group was 0.33 +/- 0.15. MP density was 13% higher in men than in women (P < 0.05). Serum and blood concentrations of alpha-tocopherol, vitamin C, and all carotenoids except lycopene were significantly higher in women. Adipose lutein concentrations were also significantly higher in women than in men. Regression models showed a positive significant association between MP density and serum lutein, serum zeaxanthin, and adipose lutein concentrations in men after adjustment for age, but no relation in women. In men, serum lutein remained significantly associated with MP density after adjustment for age, total cholesterol, body mass index, and smoking. CONCLUSION: The associations between MP density and serum lutein, serum zeaxanthin, and adipose lutein concentrations are stronger in men than in women.


Subject(s)
Adipose Tissue/chemistry , Lutein/analysis , Lutein/blood , Macula Lutea/chemistry , Retinal Pigments/analysis , beta Carotene/blood , Adolescent , Adult , Aged , Ascorbic Acid/blood , Body Mass Index , Carotenoids/blood , Cholesterol/blood , Cholesterol, HDL/blood , Cholesterol, LDL/blood , Female , Humans , Lycopene , Male , Middle Aged , Regression Analysis , Sex Characteristics , Smoking , Xanthophylls , Zeaxanthins , alpha-Tocopherol/blood , beta Carotene/analogs & derivatives
SELECTION OF CITATIONS
SEARCH DETAIL
...