Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Vasc Biol ; 4(1): 40-49, 2022 Nov 01.
Article in English | MEDLINE | ID: mdl-36279189

ABSTRACT

Marfan syndrome (MFS) is a connective tissue disorder causing aortic aneurysm formation. Currently, only prophylactic aortic surgery and blood pressure-lowering drugs are available to reduce the risk of aortic rupture. Upon whole genome sequencing of a Marfan family, we identified a complement gene C1R variant (p.Ser152Leu), which is associated with severe aortic patients. Therefore, we assessed the role of complement activation in MFS aortic tissue. Expression of various complement genes and proteins was detected in human and murine MFS aneurysm tissue, which prompted us to study complement inhibition in MFS mice. Treatment of the Fbn1C1041G/+ MFS mice with human plasma-derived C1-esterase inhibitor Cetor® resulted in reduced complement deposition, decreased macrophage influx in the aorta, and lower circulating TNFα levels. However, in line with previous anti-inflammatory treatments, complement inhibition did not change the aortic dilatation rate in this MFS mouse model. Thus, while complement factors/component 3 activation were detected in human/murine MFS aorta, Cetor® had no effect on aortic dilatation in MFS mice, indicating that complement inhibition is not a suitable treatment strategy in MFS.

2.
Cardiovasc Pathol ; 38: 1-6, 2019.
Article in English | MEDLINE | ID: mdl-30359839

ABSTRACT

Marfan syndrome (MFS) is a connective tissue disorder caused by mutations in the fibrillin-1 gene (FBN1), resulting in aortic aneurysm formation and dissections. Interestingly, variable aortopathy is observed even within MFS families with the same mutation. Thus, additional risk factors determine disease severity. Here, we describe a case of a 2-month-old Fbn1C1039G/+ MFS mouse with extreme aortic dilatation and increased vascular inflammation, when compared to MFS siblings, which coincided with unilateral renal cystic disease. In addition, this mouse presented with increased serum levels of creatinine, angiotensin-converting enzyme, corticosterone, macrophage chemoattractant protein-1, and interleukin-6, which may have contributed to the vascular pathology. Possibly, cystic kidney disease is associated with aneurysm progression in MFS patients. Therefore, we propose that close monitoring of the presence of renal cysts in MFS patients, during regular vascular imaging of the whole aorta trajectory, may provide insight in the frequency of cystic kidney disease and its potential as a novel indicator of aneurysm progression in MFS patients.


Subject(s)
Aorta/pathology , Aortic Aneurysm/etiology , Fibrillin-1/genetics , Kidney Diseases, Cystic/etiology , Marfan Syndrome/genetics , Animals , Aorta/metabolism , Aortic Aneurysm/blood , Aortic Aneurysm/genetics , Aortic Aneurysm/pathology , Aortitis/blood , Aortitis/etiology , Aortitis/genetics , Aortitis/pathology , Biomarkers/blood , Dilatation, Pathologic , Disease Models, Animal , Fibrillin-1/metabolism , Genetic Predisposition to Disease , Kidney Diseases, Cystic/blood , Kidney Diseases, Cystic/genetics , Kidney Diseases, Cystic/pathology , Male , Marfan Syndrome/blood , Marfan Syndrome/complications , Marfan Syndrome/diagnosis , Mice, Inbred C57BL , Mice, Transgenic , Phenotype
3.
J Pathol ; 243(3): 294-306, 2017 11.
Article in English | MEDLINE | ID: mdl-28727149

ABSTRACT

Marfan syndrome (MFS) is a connective tissue disorder in which aortic rupture is the major cause of death. MFS patients with an aortic diameter below the advised limit for prophylactic surgery (<5 cm) may unexpectedly experience an aortic dissection or rupture, despite yearly monitoring. Hence, there is a clear need for improved prognostic markers to predict such aortic events. We hypothesize that elastin fragments play a causal role in aortic calcification in MFS, and that microcalcification serves as a marker for aortic disease severity. To address this hypothesis, we analysed MFS patient and mouse aortas. MFS patient aortic tissue showed enhanced microcalcification in areas with extensive elastic lamina fragmentation in the media. A causal relationship between medial injury and microcalcification was revealed by studies in vascular smooth muscle cells (SMCs); elastin peptides were shown to increase the activity of the calcification marker alkaline phosphatase (ALP) and reduce the expression of the calcification inhibitor matrix GLA protein in human SMCs. In murine Fbn1C1039G/+ MFS aortic SMCs, Alpl mRNA and activity were upregulated as compared with wild-type SMCs. The elastin peptide-induced ALP activity was prevented by incubation with lactose or a neuraminidase inhibitor, which inhibit the elastin receptor complex, and a mitogen-activated protein kinase kinase-1/2 inhibitor, indicating downstream involvement of extracellular signal-regulated kinase-1/2 (ERK1/2) phosphorylation. Histological analyses in MFS mice revealed macrocalcification in the aortic root, whereas the ascending aorta contained microcalcification, as identified with the near-infrared fluorescent bisphosphonate probe OsteoSense-800. Significantly, microcalcification correlated strongly with aortic diameter, distensibility, elastin breaks, and phosphorylated ERK1/2. In conclusion, microcalcification co-localizes with aortic elastin degradation in MFS aortas of humans and mice, where elastin-derived peptides induce a calcification process in SMCs via the elastin receptor complex and ERK1/2 activation. We propose microcalcification as a novel imaging marker to monitor local elastin degradation and thus predict aortic events in MFS patients. Copyright © 2017 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.


Subject(s)
Elastin/metabolism , Marfan Syndrome/metabolism , Muscle, Smooth, Vascular/metabolism , Myocytes, Smooth Muscle/metabolism , Animals , Aorta/metabolism , Aortic Aneurysm/metabolism , Aortic Aneurysm/pathology , Calcinosis/metabolism , Extracellular Signal-Regulated MAP Kinases/metabolism , Humans , Marfan Syndrome/pathology , Mice , Mitogen-Activated Protein Kinase Kinases/metabolism , Muscle, Smooth, Vascular/pathology , Myocytes, Smooth Muscle/pathology
4.
EMBO Mol Med ; 6(9): 1124-32, 2014 Sep.
Article in English | MEDLINE | ID: mdl-25007801

ABSTRACT

Macrophages are key immune cells found in atherosclerotic plaques and critically shape atherosclerotic disease development. Targeting the functional repertoire of macrophages may hold novel approaches for future atherosclerosis management. Here, we describe a previously unrecognized role of the epigenomic enzyme Histone deacetylase 3 (Hdac3) in regulating the atherosclerotic phenotype of macrophages. Using conditional knockout mice, we found that myeloid Hdac3 deficiency promotes collagen deposition in atherosclerotic lesions and thus induces a stable plaque phenotype. Also, macrophages presented a switch to anti-inflammatory wound healing characteristics and showed improved lipid handling. The pro-fibrotic phenotype was directly linked to epigenetic regulation of the Tgfb1 locus upon Hdac3 deletion, driving smooth muscle cells to increased collagen production. Moreover, in humans, HDAC3 was the sole Hdac upregulated in ruptured atherosclerotic lesions, Hdac3 associated with inflammatory macrophages, and HDAC3 expression inversely correlated with pro-fibrotic TGFB1 expression. Collectively, we show that targeting the macrophage epigenome can improve atherosclerosis outcome and we identify Hdac3 as a potential novel therapeutic target in cardiovascular disease.


Subject(s)
Atherosclerosis/genetics , Histone Deacetylases/physiology , Macrophages/physiology , Acetylation , Animals , Atherosclerosis/immunology , Atherosclerosis/metabolism , Atherosclerosis/pathology , Collagen/metabolism , Epigenesis, Genetic , Gene Expression Profiling , Gene Expression Regulation , Histone Deacetylases/genetics , Histone Deacetylases/metabolism , Humans , Lipid Metabolism/genetics , Mice, Inbred C57BL , Mice, Knockout , Transforming Growth Factor beta1/genetics , Transforming Growth Factor beta1/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...