Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 13 de 13
Filter
Add more filters










Publication year range
1.
Eur J Pharm Biopharm ; 133: 224-231, 2018 Dec.
Article in English | MEDLINE | ID: mdl-30291963

ABSTRACT

This study focussed on investigating the coupling of continuous manufacturing of drug substance and continuous manufacture of drug product. An important step in such an integrated end-to-end continuous manufacturing was envisioned by dosing the API as suspension into a twin-screw wet granulation process. To achieve this goal, a model drug substance (ibuprofen) was fed as a concentrated aqueous suspension (50% w/w) into a twin-screw granulator and compared against traditional solid feeding of the model drug substance to meet a target ibuprofen load of 60% w/w in the formulation. Granulation and compaction behaviour were evaluated to determine the impact of feeding API as suspension in twin-screw wet granulation on the critical quality attributes of the drug product. It was demonstrated that the ibuprofen suspension feed is comparable with the ibuprofen dry blend feed in twin-screw wet granulation. Next to enabling end-to-end continuous manufacturing, API suspension feed in twin-screw wet granulation could afford a number of additional advantages including manufacturing efficiency by removing the drying step for API, or overcoming processing issues linked to the bulk properties of the API powder (e.g. flowability).


Subject(s)
Drug Compounding/methods , Ibuprofen/chemistry , Suspensions/chemistry , Chemistry, Pharmaceutical/methods , Excipients/chemistry , Powders/chemistry , Technology, Pharmaceutical/methods , Water/chemistry
2.
Pharm Res ; 35(8): 167, 2018 Jun 25.
Article in English | MEDLINE | ID: mdl-29943209

ABSTRACT

PURPOSE: It was investigated if continuous wet granulation and drying could be combined in a twin-screw granulator with the aim to provide (pre-)dried granules in a single-step process, i.e. in-barrel-drying. METHODS: To have a consistent and robust material propulsion mechanism, a twin-screw granulator was divided into two compartments. One compartment was operated at lower temperature to granulate and to pre-heat the material, while another compartment was operated at very high temperature to evaporate the granulation liquid as rapidly as possible. Design of experiments was used to investigate the in-barrel-drying process in detail. The process was further investigated for twin-screw wet granulation with API suspension feed, and compared against traditional fluidised-bed drying. Granule and compact properties were evaluated to study the process impact on the product quality. RESULTS: In-barrel-drying was demonstrated as feasible and yielded completely dried and granulated material at specific settings. The evaporation zone temperature and the processed mass of water were identified as key parameters to balance the evaporation capacity of the process and the material throughput. Granules and compacts showed an acceptable product quality. CONCLUSIONS: In-barrel-drying can be used to condense the wet granulation and drying process steps into one piece of equipment, thereby limiting or even omitting downstream drying process steps.


Subject(s)
Desiccation/methods , Drug Compounding/methods , Antimalarials/chemistry , Excipients/chemistry , Lumefantrine/chemistry , Particle Size , Temperature , Water/chemistry
3.
Chimia (Aarau) ; 70(9): 604-9, 2016.
Article in English | MEDLINE | ID: mdl-27646540

ABSTRACT

In pharmaceutical manufacturing, there is an increasing interest in continuous manufacturing. As an example for fast continuous processes in general of considerable complexity, this study was focussed on improving the understanding of twin-screw wet granulation. The impact of the liquid-to-solid (L/S) mass flow ratio on product quality (granules) as well as on downstream process operations (tableting) was investigated in detail. Initially two methods were used to define L/S ratio boundaries for the granulation regime in twin-screw wet granulation. It was shown that the first method, which is based on measuring the wet granule mass flow variation, can be used to define the upper L/S ratio boundary of the granulation regime. The second method, based on measuring the granule size distribution, can be used to define the lower L/S ratio boundary of the regime. Using these methods, the granulation regime for different formulations could be established. This information was then used to show that the formulation could be optimised such that the process is more robust (i.e. wider L/S ratio boundaries for the granulation regime). Also it could be used to optimise the formulation considering further downstream processing such as drying (using as little water as possible to reduce drying efforts) or tableting (obtain granules with optimised tableting properties). Preferably, the process should be performed close to the lower L/S ratio boundary of the granulation regime. In summary, these tools enabled the quantitative establishment of granulation regime boundaries in a twin-screw wet granulation process and can be used to optimise formulation and to create a robust process. Analogies to other continuous processes in completely different applications can be conceived.


Subject(s)
Drug Compounding/methods , Cellulose/chemistry , Drug Compounding/instrumentation , Ibuprofen/chemistry , Lactose/chemistry , Particle Size , Povidone/analogs & derivatives , Povidone/chemistry , Stearic Acids/chemistry , Tablets/chemistry
4.
Int J Pharm ; 480(1-2): 73-83, 2015 Mar 01.
Article in English | MEDLINE | ID: mdl-25575472

ABSTRACT

In this study, water-swellable multiblock copolymers composed of semi-crystalline poly(ϵ-caprolactone) [PCL] blocks and amorphous blocks consisting of poly(D,L-lactide) (PDLLA) and poly(ethylene glycol) (PEG) [PDLLA-PEG] were synthesized. The block ratio of these [PDLLA-PEG]-b-[PCL] multiblock copolymers was varied and the degradation of implants prepared of these polymers by hot melt extrusion (HME) was compared with implants prepared of [PCL-PEG]-b-[PCL], a copolymer which has been described previously (Stankovic et al., 2014). It was shown that the initial degradation rate of the [PDLLA-PEG]-b-[PCL] multiblock copolymers increased with increasing the content of amorphous [PDLLA-PEG] block and that the degradation rate of these multiblock copolymers was faster than that of the [PCL-PEG]-b-[PCL] multiblock copolymers due to rapid degradation of the [PDLLA-PEG] block. Furthermore, the release of the model proteins lysozyme and bovine serum albumin from polymer implants prepared by HME was studied. It was found that the protein release from [PDLLA-PEG]-b-[PCL] copolymers was incomplete, which is not acceptable for any application of these polymers. Besides, [PCL-PEG]-b-[PCL] copolymers showed slow and continuous release. We hypothesize that the incomplete release is explained by an irreversible interaction between the proteins and polymer degradation products or by entrapment of the protein in the hydrophobic and non-swellable polymer matrix that was left after degradation and loss of the hydrophilic [PDLLA-PEG] blocks from the degrading polymer.


Subject(s)
Polyesters/chemistry , Polyethylene Glycols/chemistry , Proteins/administration & dosage , Chemistry, Pharmaceutical/methods , Crystallization , Delayed-Action Preparations , Drug Implants , Drug Liberation , Hydrophobic and Hydrophilic Interactions , Muramidase/administration & dosage , Muramidase/chemistry , Proteins/chemistry , Serum Albumin, Bovine/administration & dosage , Serum Albumin, Bovine/chemistry , Water/chemistry
5.
J Pharm Biomed Anal ; 97: 39-46, 2014 Aug.
Article in English | MEDLINE | ID: mdl-24814994

ABSTRACT

Freeze drying is a complex, time consuming and thus expensive process, hence creating a need for understanding the material behaviour in the process environment and for process optimization. Near-infrared (NIR) spectroscopy offers the opportunity to monitor physicochemical changes of the formulation during freeze-drying. The aim of this work was to examine whether NIR spectroscopy allows in-line monitoring of all components during the entire freeze-drying process of a multi-component pharmaceutical formulation (a solution of fenofibrate and mannitol in a mixture of tertiary-butyl alcohol, and water). To extract useful information of all components in the formulation from the large multivariate data-sets obtained during in-line spectroscopic monitoring, several spectral pre-processing techniques and spectral data analysis techniques such as the mean of selected wavenumbers (Mws), the correlation coefficient (CorrCoef) and principal component analysis (PCA) have been evaluated and compared. To find out whether these chemometric techniques are also able to differentiate between changes in the process settings influencing the freeze-drying process of the formulation, freeze-drying processes were performed at four different conditions. Results demonstrated that in-line measurements using NIR spectroscopy were possible in an icy environment and that a further process understanding could be obtained. Data-analysis revealed the crystallization behaviour of each of the four components. In addition, using the three pre-processing techniques allowed observe the sublimation of the solvents. Mws and CorrCoef have proven to be adequate methods for monitoring the main physicochemical changes of product during the processes; this affirmation was confirmed by observing the outputs of PCA for entire processes.


Subject(s)
Fenofibrate/analysis , Mannitol/analysis , Spectroscopy, Near-Infrared , Chemistry, Pharmaceutical , Crystallization , Freeze Drying , Principal Component Analysis , Solutions/chemistry , Water/chemistry , X-Ray Diffraction , tert-Butyl Alcohol/chemistry
6.
PLoS One ; 8(9): e74403, 2013.
Article in English | MEDLINE | ID: mdl-24040240

ABSTRACT

The aim of this study was to develop a user-friendly model for spray drying that can aid in the development of a pharmaceutical product, by shifting from a trial-and-error towards a quality-by-design approach. To achieve this, a spray dryer model was developed in commercial and open source spreadsheet software. The output of the model was first fitted to the experimental output of a Büchi B-290 spray dryer and subsequently validated. The predicted outlet temperatures of the spray dryer model matched the experimental values very well over the entire range of spray dryer settings that were tested. Finally, the model was applied to produce glassy sugars by spray drying, an often used excipient in formulations of biopharmaceuticals. For the production of glassy sugars, the model was extended to predict the relative humidity at the outlet, which is not measured in the spray dryer by default. This extended model was then successfully used to predict whether specific settings were suitable for producing glassy trehalose and inulin by spray drying. In conclusion, a spray dryer model was developed that is able to predict the output parameters of the spray drying process. The model can aid the development of spray dried pharmaceutical products by shifting from a trial-and-error towards a quality-by-design approach.


Subject(s)
Desiccation/instrumentation , Drug Compounding/instrumentation , Models, Statistical , Excipients/chemistry , Hot Temperature , Humidity , Inulin/chemistry , Trehalose/chemistry
7.
Drug Metab Dispos ; 41(8): 1557-65, 2013 Aug.
Article in English | MEDLINE | ID: mdl-23733277

ABSTRACT

The inclusion of nanoparticles dispersed in a hydrophilic matrix is one of the formulation strategies to improve the bioavailability of orally administered Biopharmaceutics Classification System (BCS) class II and IV drugs by increasing their dissolution rate in the intestine. To confirm that the increased dissolution rate results in increased bioavailability, in vitro and in vivo animal experiments are performed, however, translation to the human situation is hazardous. In this study, we used a range of in vitro and ex vivo methods, including methods applying human tissue, to predict the in vivo oral bioavailability of a model BCS class II CB-1 antagonist, formulated as a nanoparticle solid dispersion. The enhanced dissolution rate from the nanoparticle formulation resulted in an increased metabolite formation in both rat and human precision-cut intestinal slices, suggesting increased uptake and intracellular drug concentration in the enterocytes. In Ussing chamber experiments with human tissue, both the metabolite formation and apical efflux of the metabolite were increased for the nanoparticulate solid dispersion compared with a physical mixture, in line with the results in intestinal slices. The pharmacokinetics of the different formulations was studied in rats in vivo. The nanoparticle formulation indeed improved the absorption of the cannabinoid receptor 1 (CB-1) antagonist and the delivery into the brain compared with the physical mixture. In conclusion, the combined approach provides a valuable set of tools to investigate the effects of formulation on the absorption of poorly soluble compounds in human intestine and may provide relevant information on the oral bioavailability in humans early in the development process.


Subject(s)
Cannabinoid Receptor Antagonists/administration & dosage , Intestinal Absorption , Nanoparticles/administration & dosage , Receptor, Cannabinoid, CB1/antagonists & inhibitors , Animals , Brain/metabolism , Cannabinoid Receptor Antagonists/chemistry , Cannabinoid Receptor Antagonists/pharmacokinetics , Chemistry, Pharmaceutical , Humans , Male , Rats , Rats, Wistar , Solubility
8.
Eur J Pharm Sci ; 49(4): 578-87, 2013 Jul 16.
Article in English | MEDLINE | ID: mdl-23707467

ABSTRACT

Parenteral protein delivery requires preservation of the integrity of proteins and control over the release kinetics. In order to preserve the integrity, parenteral protein delivery formulations typically need to be processed at low temperatures. Therefore, we synthesized a novel low melting biodegradable hydrophilic multiblock copolymer composed of poly (ethylene glycol) and poly (ε-caprolactone) to allow extrusion at relatively low temperatures. We investigated the extrusion characteristics of this polymer and explored a strategy how to control the release of the model protein lysozyme from small diameter extruded implants. It was found that the polymer could be well extruded at temperatures as low as 55 °C. Moreover, lysozyme remained active both during extrusion as well as during release. Lysozyme release kinetics could be tailored by the co-incorporation of an oligosaccharide, inulin, which functions as a pore-forming excipient. It was concluded that this hydrophilic multiblock copolymer has promising characteristics for the preparation by melt extrusion of protein delivery implants with a release profile that is sustained over a period of more than 7 months.


Subject(s)
Drug Delivery Systems , Drug Implants , Muramidase/chemistry , Polyesters/chemistry , Polyethylene Glycols/chemistry , Hydrophobic and Hydrophilic Interactions , Inulin/chemistry , Micrococcus/drug effects , Muramidase/administration & dosage , Proteins , Temperature
9.
Expert Opin Drug Deliv ; 8(9): 1121-40, 2011 Sep.
Article in English | MEDLINE | ID: mdl-21722000

ABSTRACT

INTRODUCTION: Many new drug substances have low aqueous solubility which can cause poor bioavailability after oral administration. The application of solid dispersions is a useful method to increase the dissolution rate of these drugs and thereby improve their bioavailability. So far, several methods have been developed to prepare solid dispersions. To obtain a product with the desired attributes, both the formulation and production processes should be considered. AREAS COVERED: The most currently used methods to produce solid dispersions, such as the fusion method, hot melt extrusion, spray drying, freeze drying and supercritical fluid precipitation, are reviewed in this paper. In addition, the physicochemical characteristics of the obtained solid dispersions are discussed. EXPERT OPINION: Solid dispersions can be successfully prepared by simple fusion, hot melt extrusion, spray drying, freeze drying and supercritical fluid precipitation. Hot melt extrusion, spray drying and freeze drying are processes that can be applied for large scale production. The simple fusion method is not very suitable for large scale production, but is particularly suitable for screening formulations. The most recent method to produce sold dispersions is supercritical fluid precipitation. The process conditions of this method need extensive investigation, in particular in relationship with the selection of the type of carrier and/or solvent. Both processes and formulation aspects strongly affect the characteristics of solid dispersion products. Furthermore, application of crystalline solid dispersions is gaining increasing interest because they are thermodynamically more stable than amorphous solid dispersions.


Subject(s)
Drug Compounding/methods , Pharmaceutical Preparations/administration & dosage , Pharmaceutical Preparations/chemistry , Pharmacokinetics , Administration, Oral , Animals , Biological Availability , Chemical Phenomena , Chemistry, Pharmaceutical , Decision Trees , Drug Carriers/administration & dosage , Drug Carriers/chemistry , Drug Carriers/pharmacokinetics , Humans , Hydrophobic and Hydrophilic Interactions , Pharmaceutical Vehicles/chemistry , Solubility , Suspensions
10.
Pharm Res ; 28(10): 2567-74, 2011 Oct.
Article in English | MEDLINE | ID: mdl-21607777

ABSTRACT

PURPOSE: To test whether confocal laser scanning microscopy (CLSM) can be used as an analytical tool to determine the drug crystal size in a powder mixture or a crystalline solid dispersion. METHODS: Crystals of the autofluorescent drug dipyridamole were incorporated in a matrix of crystalline mannitol by physical mixing or freeze-drying. Laser diffraction analysis and dissolution testing were used to validate the particle size that was found by CLSM. RESULTS: The particle size of the pure drug as determined by laser diffraction and CLSM were similar (D(50) of approximately 22 µm). CLSM showed that the dipyridamole crystals in the crystalline dispersion obtained by freeze-drying of less concentrated solutions were of sub-micron size (0.7 µm), whereas the crystals obtained by freeze-drying of more concentrated solutions were larger (1.3 µm). This trend in drug crystal size was in agreement with the dissolution behavior of the tablets prepared from these products. CONCLUSION: CLSM is a useful technique to determine the particle size in a powder mixture. Furthermore, CLSM can be used to determine the drug crystal size over a broad size distribution. A limitation of the method is that the drug should be autofluorescent.


Subject(s)
Chemistry, Pharmaceutical/methods , Microscopy, Confocal/methods , Pharmaceutical Preparations/chemistry , Tablets/chemistry , Dipyridamole/chemistry , Freeze Drying/methods , Mannitol/chemistry , Particle Size , Powders/chemistry , Solubility
12.
AAPS J ; 12(4): 569-75, 2010 Dec.
Article in English | MEDLINE | ID: mdl-20625865

ABSTRACT

We developed a novel process, "controlled crystallization during freeze-drying" to produce drug nanocrystals of poorly water-soluble drugs. This process involves freeze-drying at a relatively high temperature of a drug and a matrix material from a mixture of tertiary butyl alcohol and water, resulting in drug nanocrystals incorporated in a matrix. The aim of this study was to elucidate the mechanisms that determine the size of the drug crystals. Fenofibrate was used as a model lipophilic drug. To monitor the crystallization during freeze-drying, a Raman probe was placed just above the sample in the freeze-dryer. These in-line Raman spectroscopy measurements clearly revealed when the different components crystallized during freeze-drying. The solvents crystallized only during the freezing step, while the solutes only crystallized after the temperature was increased, but before drying started. Although the solutes crystallized only after the freezing step, both the freezing rate and the shelf temperature were critical parameters that determined the final crystal size. At a higher freezing rate, smaller interstitial spaces containing the freeze-concentrated fraction were formed, resulting in smaller drug crystals (based on dissolution data). On the other hand, when the solutes crystallized at a lower shelf temperature, the degree of supersaturation is higher, resulting in a higher nucleation rate and consequently more and therefore smaller crystals. In conclusion, for the model drug fenofibrate, a high freezing rate and a relatively low crystallization temperature resulted in the smallest crystals and therefore the highest dissolution rate.


Subject(s)
Fenofibrate/chemistry , Freeze Drying , Hypolipidemic Agents/chemistry , Spectrum Analysis, Raman/methods , Calorimetry, Differential Scanning , Crystallization , Solubility , Spectrophotometry, Ultraviolet , Tablets , X-Ray Diffraction
13.
Eur J Pharm Sci ; 38(3): 224-9, 2009 Oct 08.
Article in English | MEDLINE | ID: mdl-19631270

ABSTRACT

In a previous study we have developed a novel process to produce drug nanocrystals. This process, "controlled crystallization during freeze-drying" has shown to be a successful method to increase the dissolution rate of poorly water-soluble drugs [de Waard, H., Hinrichs, W.L.J., Frijlink, H.W., 2008. A novel bottom-up process to produce drug nanocrystals: controlled crystallization during freeze drying. J. Control. Release 128, 179-183]. This process consisted of two steps: a solution of a matrix material (mannitol) in water was mixed with a solution of a drug (fenofibrate) in tertiary butyl alcohol (TBA). This mixture was frozen and subsequently freeze-dried at relatively high temperature (-25 degrees C). Since the solution of matrix and drug in the water-TBA mixture is thermodynamically unstable, it had to be frozen immediately and fast after preparation to prevent premature crystallization of the drug resulting in the formation too large drug crystals. Therefore, small quantities were manually mixed in a vial and this vial was immersed in liquid nitrogen. To make this process ready for large scale production, the modification of this batch process to a semi-continuous process by the application of a 3-way nozzle was studied. With this nozzle, the aqueous and TBA-solutions were pumped into the nozzle via two separate channels and mixed just at the moment they left the nozzle. Thorough mixing was facilitated by the atomizing air, supplied via the third channel. Since the mixture was sprayed immediately into liquid nitrogen, premature crystallization was prevented. A further advantage was that the atomizing air generated small droplets which were directly immersed into liquid nitrogen. Consequently, the mixture was frozen even faster than in the batch process. This resulted in a reduced size of the drug crystals and hence a higher dissolution rate. Therefore, using the semi-continuous process does not only result in successfully making this process suitable for large scale production of the controlled crystallized dispersions, but it also results in a better product.


Subject(s)
Chemistry, Pharmaceutical/methods , Nanoparticles/chemistry , Pharmaceutical Preparations/chemical synthesis , Chemistry, Pharmaceutical/instrumentation , Crystallization , Freeze Drying/methods , X-Ray Diffraction
SELECTION OF CITATIONS
SEARCH DETAIL
...