Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Atherosclerosis ; 318: 22-31, 2021 02.
Article in English | MEDLINE | ID: mdl-33450475

ABSTRACT

BACKGROUND AND AIMS: The value of serial coronary artery calcium (CAC) scores to predict changes in absolute myocardial perfusion and epicardial vasomotor function is poorly documented. This study explored the association between progression of CAC score and changes in absolute myocardial perfusion. METHODS: Fifty-three patients (26% female) with de novo single-vessel coronary artery disease underwent [15O]H2O positron emission tomography/computed tomography at 1 month (baseline), 1 year, and 3 years after complete revascularization with percutaneous coronary intervention (PCI) to assess CAC scores, hyperemic myocardial blood flow (hMBF), coronary flow reserve (CFR) and cold pressor test MBF (CPT-MBF), within the context of the VANISH trial. RESULTS: Baseline CAC score was 0 in 9%, 0.1-99.9 in 40%, 100-399.9 in 36% and ≥400 in 15% of patients, respectively. Mixed model-analysis allowed for averaging perfusion indices over all time points: hMBF (3.74 ± 0.83; 3.33 ± 0.79; 3.08 ± 0.78 and 2.44 ± 0.74 mL min-1·g-1) and CFR (3.82 ± 1.12; 3.17 ± 0.80; 3.19 ± 0.81; 2.63 ± 0.92) were lower among higher baseline CAC groups (p < 0.01; p = 0.03). However, no significant interaction was found between baseline CAC groups and time after PCI for all perfusion indices, denoting that evolution of perfusion indices over time was not significantly different between CAC groups. Furthermore, CAC progression was not correlated with evolution of hMBF (r = 0.08, p = 0.57), CFR (r = 0.09, p = 0.53) or CPT-MBF (r = 0.03, p = 0.82) during 3 years of follow-up. CONCLUSIONS: Higher baseline CAC was associated with lower hMBF and CFR. However, both baseline CAC and its progression were not associated with evolution of absolute hMBF, CFR and CPT-MBF over time, suggesting that CAC score and progression of CAC are poor indicators of change in absolute myocardial perfusion.


Subject(s)
Coronary Artery Disease , Myocardial Perfusion Imaging , Percutaneous Coronary Intervention , Calcium , Coronary Angiography , Coronary Artery Disease/diagnostic imaging , Coronary Artery Disease/therapy , Coronary Circulation , Coronary Vessels/diagnostic imaging , Coronary Vessels/surgery , Female , Humans , Male , Percutaneous Coronary Intervention/adverse effects , Perfusion , Positron Emission Tomography Computed Tomography , Positron-Emission Tomography
2.
Neth Heart J ; 28(Suppl 1): 57-65, 2020 Aug.
Article in English | MEDLINE | ID: mdl-32780333

ABSTRACT

Determining the anatomic severity and extent of coronary artery disease (CAD) by means of coronary computed tomography angiography (CCTA) and its effect on perfusion using myocardial perfusion imaging (MPI) form the pillars of the non-invasive imaging assessment of CAD. This review will 1) focus on CCTA and [15O]H2O positron emission tomography MPI as stand-alone imaging modalities and their combined use for detecting CAD, 2) highlight some of the lessons learned from the PACIFIC trial (Comparison of Coronary CT Angiography, SPECT, PET, and Hybrid Imaging for Diagnosis of Ischemic Heart Disease Determined by Fractional Flow Reserve (FFR) (NCT01521468)), and 3) discuss the use of [15O]H2O PET MPI in the clinical work-up of patients with a chronic coronary total occlusion (CTO).

SELECTION OF CITATIONS
SEARCH DETAIL
...