Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 14 de 14
Filter
Add more filters










Publication year range
1.
Mar Pollut Bull ; 119(1): 132-144, 2017 Jun 15.
Article in English | MEDLINE | ID: mdl-28347496

ABSTRACT

Marine intrusion was simulated in a choked and in a restricted coastal lagoon by using a 3D-hydrodynamic model. To study the spatiotemporal progression of seawater intrusion and its mixing efficiency with lagoon waters we define Marine Mixed Volume (VMM) as a new hydrodynamic indicator. Spatial patterns in both lagoons were described by studying the time series and maps of VMM taking into account the meteorological conditions encountered during a water year. The patterns comprised well-mixed zones (WMZ) and physical barrier zones (PBZ) that act as hydrodynamic boundaries. The choked Bages-Sigean lagoon comprises four sub-basins: a PBZ at the inlet, and two WMZ's separated by another PBZ corresponding to a constriction zone. The volumes of the PBZ were 2.1 and 5.4 millions m3 with characteristic mixing timescale of 68 and 84days, respectively. The WMZ were 12.3 and 43.3 millions m3 with characteristics mixing timescale of 70 and 39days, respectively.


Subject(s)
Hydrodynamics , Seawater , Water Movements
2.
PLoS One ; 10(6): e0130552, 2015.
Article in English | MEDLINE | ID: mdl-26115121

ABSTRACT

Using three different microscopy techniques (epifluorescence, electronic and atomic force microscopy), we showed that high-Mg calcite grains in calcifying microbial mats from the hypersaline lake "La Salada de Chiprana", Spain, contain viruses with a diameter of 50-80 nm. Energy-dispersive X-ray spectrometer analysis revealed that they contain nitrogen and phosphorus in a molar ratio of ~9, which is typical for viruses. Nucleic acid staining revealed that they contain DNA or RNA. As characteristic for hypersaline environments, the concentrations of free and attached viruses were high (>10(10) viruses per g of mat). In addition, we showed that acid treatment (dissolution of calcite) resulted in release of viruses into suspension and estimated that there were ~15 × 10(9) viruses per g of calcite. We suggest that virus-mineral interactions are one of the possible ways for the formation of nano-sized structures often described as "nanobacteria" and that viruses may play a role in initiating calcification.


Subject(s)
Calcium Carbonate/chemistry , Viruses/chemistry , Salinity , Spectrometry, X-Ray Emission
3.
ISME J ; 5(5): 831-42, 2011 May.
Article in English | MEDLINE | ID: mdl-21124489

ABSTRACT

Previous studies indicate that lysogeny is preponderant when environmental conditions are challenging for the bacterial communities and when their metabolism is reduced. Furthermore, it appears that lysogeny is more frequent within certain bacterial phylogenetic groups. In this comparative study from 10 freshwater reservoirs and 10 coastal lagoons, we aim to disentangle the influence of these different factors. In eight reservoirs and four lagoons, lysogeny was detected by induction assays with mitomycin C, and induction significantly modified the bacterial community composition (BCC), whereas community composition remained constant in ecosystems in which lysogeny was not observed. Among the phylogenetic groups studied, the most abundant ones were Bacteroidetes and α-proteobacteria in lagoons, and ß-proteobacteria and Bacteroidetes in reservoirs. These dominant groups comprised the highest proportions of inducible lysogens. In order to unravel the effects of bacterial metabolism from phylogeny on lysogeny, we measured bacterial community physiology and the specific activities of selected phylogenetic groups. The proportion of inducible lysogens within the α- and the ß-proteobacteria decreased with increasing group-specific metabolism in lagoons and reservoirs, respectively. In contrast, this relationship was not observed for the other lysogen-containing groups. Hence, both host physiology and phylogeny are critical for the establishment of lysogeny. This study illustrates the importance of lysogeny among the most abundant phylogenetic groups, and further suggests its strong structuring impact on BCC.


Subject(s)
Bacteroidetes/genetics , Ecosystem , Lysogeny , Phylogeny , Water Microbiology , Bacteroidetes/classification , Bacteroidetes/metabolism , Bacteroidetes/virology , Fresh Water/microbiology , Fresh Water/virology , Plankton/classification , Plankton/genetics , Plankton/metabolism , Plankton/virology , Proteobacteria/classification , Proteobacteria/genetics , Proteobacteria/metabolism , Proteobacteria/virology , Salinity , Water/analysis
4.
Appl Environ Microbiol ; 73(12): 3975-83, 2007 Jun.
Article in English | MEDLINE | ID: mdl-17449697

ABSTRACT

We studied the diversity of Chloroflexus-like bacteria (CLB) in a hypersaline phototrophic microbial mat and assayed their near-infrared (NIR) light-dependent oxygen respiration rates. PCR with primers that were reported to specifically target the 16S rRNA gene from members of the phylum Chloroflexi resulted in the recovery of 49 sequences and 16 phylotypes (sequences of the same phylotype share more than 96% similarity), and 10 of the sequences (four phylotypes) appeared to be related to filamentous anoxygenic phototrophic members of the family Chloroflexaceae. Photopigment analysis revealed the presence of bacteriochlorophyll c (BChlc), BChld, and gamma-carotene, pigments known to be produced by phototrophic CLB. Oxygen microsensor measurements for intact mats revealed a NIR (710 to 770 nm) light-dependent decrease in aerobic respiration, a phenomenon that we also observed in an axenic culture of Chloroflexus aurantiacus. The metabolic ability of phototrophic CLB to switch from anoxygenic photosynthesis under NIR illumination to aerobic respiration under non-NIR illumination was further used to estimate the contribution of these organisms to mat community respiration. Steady-state oxygen profiles under dark conditions and in the presence of visible (VIS) light (400 to 700 nm), NIR light (710 to 770 nm), and VIS light plus NIR light were compared. NIR light illumination led to a substantial increase in the oxygen concentration in the mat. The observed impact on oxygen dynamics shows that CLB play a significant role in the cycling of carbon in this hypersaline microbial mat ecosystem. This study further demonstrates that the method applied, a combination of microsensor techniques and VIS and NIR illumination, allows rapid establishment of the presence and significance of CLB in environmental samples.


Subject(s)
Biodiversity , Chloroflexus/genetics , Oxygen Consumption/physiology , Phylogeny , Pigments, Biological/analysis , Seawater/microbiology , Bacterial Proteins/analysis , Bacteriochlorophylls/analysis , Base Sequence , Carotenoids/analysis , Chloroflexus/physiology , DNA Primers/genetics , Molecular Sequence Data , Photosynthesis/physiology , RNA, Ribosomal, 16S/genetics , Sequence Analysis, DNA , Spain
5.
Appl Environ Microbiol ; 73(7): 2101-9, 2007 Apr.
Article in English | MEDLINE | ID: mdl-17259363

ABSTRACT

We investigated the characteristics of the sulfur-oxidizing symbiont hosted in the gills of Codakia orbicularis, a bivalve living in shallow marine tropical environments. Special attention was paid to describing the heterogeneity of the population by using single-cell approaches including flow cytometry (FCM) and different microscopic techniques and by analyzing a cell size fractionation experiment. Up to seven different subpopulations were distinguished by FCM based on nucleic acid content and light side scattering of the cells. The cell size analysis of symbionts showed that the symbiotic population was very heterogeneous in size, i.e., ranging from 0.5 to 5 mum in length, with variable amounts of intracellular sulfur. The side-scatter signal analyzed by FCM, which is often taken as a proxy of cell size, was greatly influenced by the sulfur content of the symbionts. FCM revealed an important heterogeneity in the relative nucleic acid content among the subclasses. The larger cells contained exceptionally high levels of nucleic acids, suggesting that these cells contained multiple copies of their genome, i.e., ranging from one copy for the smaller cells to more than four copies for the larger cells. The proportion of respiring symbionts (5-cyano-2,3-ditolyl-terazolium chloride positive) in the bacteriocytes of Codakia revealed that around 80% of the symbionts hosted by Codakia maintain respiratory activity throughout the year. These data allowed us to gain insight into the functioning of the symbionts within the host and to propose some hypotheses on how the growth of the symbionts is controlled by the host.


Subject(s)
Bacteria/metabolism , Bivalvia/microbiology , Sulfur/metabolism , Symbiosis , Animals , Bacteria/genetics , Cell Size , Flow Cytometry , Microscopy, Electron, Scanning , Nucleic Acids/analysis , Oxidation-Reduction , Scattering, Radiation
6.
FEMS Microbiol Ecol ; 57(1): 9-17, 2006 Jul.
Article in English | MEDLINE | ID: mdl-16819945

ABSTRACT

Microbial mats are characterized by high primary production but low growth rates, pointing to a limitation of growth by the lack of nutrients or substrates. We identified compounds that instantaneously stimulated photosynthesis rates and oxygen consumption rates in a hypersaline microbial mat by following the short-term response (c. 6 h) of these processes to addition of nutrients, organic and inorganic carbon compounds, using microsensors. Net photosynthesis rates were not stimulated by compound additions. However, both gross photosynthesis and oxygen consumption were substantially stimulated (by a minimum of 25%) by alanine (1 mM) and glutamate (3.5 mM) as well as by phosphate (0.1 mM). A low concentration of ammonium (0.1 mM) did not affect photosynthesis and oxygen consumption, whereas a higher concentration (3.5 mM) decreased both process rates. High concentrations of glycolate (5 mM) and phosphate (1 mM) inhibited gross photosynthesis but not oxygen consumption, leading to a decrease of net photosynthesis. Photosynthesis was not stimulated by addition of inorganic carbon, nor was oxygen consumption stimulated by organic compounds like glycolate (5 mM) or glucose (5 mM), indicating that carbon was efficiently cycled within the mat. Photosynthesis and oxygen consumption were apparently tightly coupled, because stimulations always affected both processes to the same extent, which resulted in unchanged net photosynthesis rates. These findings illustrate that microsensor techniques, due to their ability to quantify all three processes, can clarify community responses to nutrient enrichment studies much better than techniques that solely monitor net fluxes.


Subject(s)
Ecosystem , Environmental Microbiology , Oxygen Consumption/drug effects , Oxygen/metabolism , Photosynthesis/drug effects , Biosensing Techniques , Fresh Water/microbiology , Hydrogen Sulfide/chemistry , Ion-Selective Electrodes , Nitrogen Fixation/physiology , Oxygen/analysis , Oxygen Consumption/physiology , Phosphates/metabolism , Photosynthesis/physiology , Saline Solution, Hypertonic/metabolism
8.
Microb Ecol ; 49(4): 604-16, 2005 May.
Article in English | MEDLINE | ID: mdl-16052382

ABSTRACT

Microbialites are organosedimentary deposits that have built up as a result of the growth and binding of detrital sediment by a benthic microbial community. This study focuses on microbialites built by monospecific populations of cyanobacteria in the south-west lagoon of New Caledonia, where they have been observed down to 20-25 m depth. The aim was to study their photosynthetic and respiratory responses to various light intensities. The Phormidium sp. TK1 microbialite was collected at 19 m depth and the P. crosbyanum (Tilden) microbialite was collected at 0.5 and 13 m depth. Phormidium sp. TK1 showed all the characteristic features of a low-light adapted species. The initial slope of the Photosynthesis versus Irradiance curve for this microbialite was close to the maximum quantum yield indicating an efficient light absorption and utilization at low light. The photosynthesis maximum was located 0.2-0.4 mm below the surface and did not shift with changing light intensity. Respiration rates were low and not enhanced by light; photoinhibition was observed at higher light intensities. In Phormidium crosbyanum (Tilden) microbialites, the photosynthesis maximum shifted downward to lower depths with increasing light, probably as a result of phototactic migration of cyanobacterial filaments, and light-enhanced respiration was observed at light intensities above light saturation. The photosynthetic para- meters measured in P. crosbyanum indicate that P. crosbyanum is capable of photo-acclimation at high light intensities. The gross productivity of the different microbialites was comparable to values measured in cyanobacterial stromatolites observed in other shallow environments. However, the microbialites studied here were characterized by a lower respiration / production ratio which indicates a higher growth efficiency.


Subject(s)
Cyanobacteria/physiology , Geologic Sediments/microbiology , Light , Oxygen Consumption/radiation effects , Photosynthesis/radiation effects , Chromatography, High Pressure Liquid , Cyanobacteria/cytology , New Caledonia , Oxygen Consumption/physiology , Photosynthesis/physiology , Pigments, Biological/analysis , Tropical Climate
9.
Microbiology (Reading) ; 150(Pt 8): 2555-2564, 2004 Aug.
Article in English | MEDLINE | ID: mdl-15289552

ABSTRACT

Members of the Chlorobiaceae and Chloroflexaceae are unique among the phototrophic micro-organisms in having a remarkably rich chlorophyll pigment diversity. The physiological regulation of this diversity and its ecological implications are still enigmatic. The bacteriochlorophyll composition of the chlorobiaceae Prosthecochloris aestuarii strain CE 2404 and Chlorobium phaeobacteroides strain UdG 6030 was therefore studied by both HPLC with photodiode array (PDA) detection and liquid chromatography-mass spectrometry (LC-MS). These strains were grown in liquid cultures under green light (480-615 nm) at different light intensities (0.2-55.7 micromol photons m(-2) s(-1)), simulating the irradiance regime at different depths of the water column of deep lakes. The specific growth rates of Ptc. aestuarii under green light achieved a maximum of 0.06 h(-1) at light intensities exceeding 6 micromol photons m(-2) s(-1), lower than the maximum observed under white light (approx. 0.1 h(-1)). The maximal growth rates of Chl. phaeobacteroides under green light were slightly higher (0.07 h(-1)) than observed for Ptc. aestuarii and were achieved at 3.5 and 4.3 micromol photons m(-2) s(-1). LC-MS/MS analysis of pigment extracts revealed most (>90 %) BChl c homologues of Ptc. aestuarii to be esterified with farnesol. The homologues differed in mass by multiples of 14 Da, reflecting different alkyl subsituents at positions C-8 and C-12 on the tetrapyrrole macrocycle. The relative proportions of the individual homologues varied only slightly among different light intensities. The specific content of BChl c was maximal at 3-5 micromol photons m(-2) s(-1) [400+/-150 nmol BChl c (mg protein)(-1)]. In the case of Chl. phaeobacteroides, the specific content of BChl e was maximal at 4.3 micromol photons m(-2) s(-1) [115 nmol BChl e (mg protein)(-1)], and this species was characterized by high carotenoid (isorenieratene) contents. The major BChl e forms were esterified with a range of isoprenoid and straight-chain alcohols. The major isoprenoid alcohols comprised mainly farnesol and to a lesser extent geranylgeraniol. The straight-chain alcohols included C(15), C(15 : 1), C(16), C(16 : 1) and C(17). Interestingly, the proportion of straight alkyl chains over isoprenoid esterified side chains shifted markedly with increasing light intensity: the isoprenoid side chains dominated at low light intensities, while the straight-chain alkyl substituents dominated at higher light intensities. The authors propose that this phenomenon may be explained as a result of changing availability of reducing power, i.e. the highly reduced straight-chain alcohols have a higher biosynthetic demand for NADPH(2) than the polyunsaturated isoprenoid with the same number of carbon atoms.


Subject(s)
Bacteriochlorophylls/chemistry , Bacteriochlorophylls/radiation effects , Chlorobi/chemistry , Chlorobi/radiation effects , Chlorobium/chemistry , Chlorobium/radiation effects , Chromatography, High Pressure Liquid , Light , Molecular Structure , Spectrophotometry
10.
Appl Environ Microbiol ; 69(9): 5157-69, 2003 Sep.
Article in English | MEDLINE | ID: mdl-12957897

ABSTRACT

Currently, there is no consensus concerning the geographic distribution and extent of endemism in Antarctic cyanobacteria. In this paper we describe the phenotypic and genotypic diversity of cyanobacteria in a field microbial mat sample from Lake Fryxell and in an artificial cold-adapted sample cultured in a benthic gradient chamber (BGC) by using an inoculum from the same mat. Light microscopy and molecular tools, including 16S rRNA gene clone libraries, denaturing gradient gel electrophoresis, and sequencing, were used. For the first time in the study of cyanobacterial diversity of environmental samples, internal transcribed spacer (ITS) sequences were retrieved and analyzed to complement the information obtained from the 16S rRNA gene. Microscopy allowed eight morphotypes to be identified, only one of which is likely to be an Antarctic endemic morphotype. Molecular analysis, however, revealed an entirely different pattern. A much higher number of phylotypes (15 phylotypes) was found, but no sequences from Nodularia and Hydrocoryne, as observed by microscopy, were retrieved. The 16S rRNA gene sequences determined in this study were distributed in 11 phylogenetic lineages, 3 of which were exclusively Antarctic and 2 of which were novel. Collectively, these Antarctic sequences together with all the other polar sequences were distributed in 22 lineages, 9 of which were exclusively Antarctic, including the 2 novel lineages observed in this study. The cultured BGC mat had lower diversity than the field mat. However, the two samples shared three morphotypes and three phylotypes. Moreover, the BGC mat allowed enrichment of one additional phylotype. ITS sequence analysis revealed a complex signal that was difficult to interpret. Finally, this study provided evidence of molecular diversity of cyanobacteria in Antarctica that is much greater than the diversity currently known based on traditional microscopic analysis. Furthermore, Antarctic endemic species were more abundant than was estimated on the basis of morphological features. Decisive arguments concerning the global geographic distribution of cyanobacteria should therefore incorporate data obtained with the molecular tools described here.


Subject(s)
Cyanobacteria/classification , Cyanobacteria/growth & development , Fresh Water/microbiology , Acclimatization , Antarctic Regions , Base Sequence , Cloning, Molecular , Cold Temperature , Cyanobacteria/cytology , Cyanobacteria/genetics , DNA Primers , DNA, Ribosomal/genetics , Gene Library , Phylogeny , Restriction Mapping
11.
Environ Microbiol ; 5(9): 754-64, 2003 Sep.
Article in English | MEDLINE | ID: mdl-12919411

ABSTRACT

We have analysed the diversity of culturable sulphate-reducing bacteria (SRB) in Zostera noltii colonized sediments from Bassin d'Arcachon (France). Four organic substrates have been tested as well as the combination of H2 and CO2 to select for lithotrophic SRB. All energy sources were supplied in parallel cultures that were amended with yeast extract plus NH4+ and prepared without a source of combined nitrogen, the latter to select for diazotrophic SRB. The 10 different enrichment media were inoculated from serial dilution of rhizosphere samples. The highest dilution cultures yielding positive growth (i.e. 10-7) were studied by molecular techniques (16S rDNA clone libraries, RISA and ARDRA). Lactate as a single organic substrate in combination with a source of combined nitrogen resulted in selection of members of the Desulfovibrionaceae. Surprisingly, when lactate was added without a source of combined nitrogen, Desulfobacteriaceae were selected. A strong influence of the presence or absence of combined nitrogen was also observed for the substrates sucrose and fructose. Whereas the liquid culture growing on sucrose and NH4+ systematically yielded 16S rDNA clones related to an environmental unidentified green sulphur bacterium (OPS185), on plates we were able to isolate a SRB related to Desulfovibrio dechloracetivorans, which likely represents a non-described species. Under diazotrophic conditions, sucrose selected for SRB clones related to the cluster formed by Desulfovibrio zosterae, Desulfovibrio salexigens and Desulfovibrio bastinii. The corresponding isolate obtained on plates showed only low sequence similarity with this closest neighbour (93.8%), and we suggest that it also represents a non-described species. Surprisingly, a 16S rDNA sequence corresponding to an archaeon, i.e. a non-extremophile Crenoarchaeota, was retrieved from several of the SRB enrichment cultures even after subsequent transfers.


Subject(s)
Archaea/classification , Bacteria/classification , Ecosystem , Plant Roots/microbiology , Soil Microbiology , Sulfates/metabolism , Zosteraceae/microbiology , Acetates/metabolism , Archaea/growth & development , Archaea/isolation & purification , Bacteria/growth & development , Bacteria/isolation & purification , Base Sequence , DNA, Archaeal/chemistry , DNA, Archaeal/isolation & purification , DNA, Bacterial/chemistry , DNA, Bacterial/isolation & purification , DNA, Ribosomal/chemistry , DNA, Ribosomal/isolation & purification , Fructose/metabolism , Lactic Acid/metabolism , Molecular Sequence Data , Organic Chemicals/metabolism , Quaternary Ammonium Compounds/metabolism , RNA, Ribosomal, 16S/chemistry , Sucrose/metabolism
12.
Appl Environ Microbiol ; 68(6): 2972-81, 2002 Jun.
Article in English | MEDLINE | ID: mdl-12039757

ABSTRACT

Sedimentary biofilms of the green sulfur bacterium Prosthecochloris aestuarii strain CE 2404, the purple sulfur bacterium Thiocapsa roseopersicina strain 5811, and a mixed culture of both were cultured in fine sand (100- to 300-microm grain size) within counter gradients of oxygen and sulfide. The artificial sediments were exposed to illumination deprived of near-infrared light (NIR) by filtering out the wavelengths longer than 700 nm to simulate the critical light conditions in submerged aquatic sediments. A 16 h of visible light-8 h of dark regimen was used. We studied the effects of these light conditions on the metabolisms of and interactions between both species by comparing the single species biofilms with the mixed biofilm. The photosynthesis rates of P. aestuarii were shown to be highly limited by the imposed light conditions, because the sulfide photooxidation rates were strongly stimulated when NIR was added. T. roseopersicina performed both aerobic chemosynthesis and photosynthesis, but the photosynthesis rates were low and poorly stimulated by the addition of NIR. This species decreased the penetration depth of oxygen in the sediment by about 1 mm by actively respiring oxygen. This way, the strict anaerobe P. aestuarii was able to grow closer to the surface in the mixed culture. As a result, P. aestuarii benefited from the presence of T. roseopersicina in the mixed culture, which was reflected by an increase in the biomass. In contrast, the density of the latter species was almost completely unaffected by the interaction. Both species coexisted in a layer of the same depth in the mixed culture, and the ecological and evolutionary implications of coexistence are discussed.


Subject(s)
Antibiosis , Chlorobi/radiation effects , Oxygen/metabolism , Phosphorylcholine/analogs & derivatives , Sulfides/metabolism , Thiocapsa roseopersicina/radiation effects , Cell Count , Chlorobi/physiology , Colony Count, Microbial , Oxidation-Reduction , Spectroscopy, Near-Infrared , Sulfur/metabolism , Thiocapsa roseopersicina/physiology
13.
Photosynth Res ; 71(1-2): 173-83, 2002.
Article in English | MEDLINE | ID: mdl-16228511

ABSTRACT

We have succeeded in culturing an axenic biofilm of the green sulfur bacterium Prosthecochloris aestuarii strain CE 2404 in an artificial sandy sediment under visible light (400-700 nm). This simulates the conditions of deep submerged sediments. A five-week incubation period, using a 16-hour light / 8-hour dark regime, was applied in the benthic gradient chamber (BGC). The biofilm was located below the oxygen penetration depth of 1.2 mm, namely between 1.5 and 2.5 mm and the biomass peak was at 2.1 mm depth. This is much shallower compared to previously described artificial mats of P. aestuarii, which were grown in the BGC under near infrared (NIR)-rich light. High resolution time courses of photosynthesis were measured as sulfide photo-oxidation rates and studied under visible light and visible light amended with NIR to assess the effect of light quality. Sulfide photo-oxidation rates were rather low under visible light and strongly stimulated at most depths under full light conditions. However, under the latter conditions the rates decelerated after a maximum rate was reached at 8-10 min, apparently due to diffusional limitation of sulfide supply. It was concluded that the top of the mat was not limited by the photon flux density, while the biomass peak and the bottom of the biofilm were severely light limited under the culture conditions. These results support the hypothesis that a biofilm of P. aestuarii can develop in deep submerged sediments, when the oxygen penetration depth is very shallow. Nevertheless, the addition of NIR light strongly enhances the potential of P. aestuarii to grow deeper in the sediment.

14.
Microbiology (Reading) ; 144(4): 1051-1061, 1998 Apr.
Article in English | MEDLINE | ID: mdl-33789390

ABSTRACT

The green sulphur bacterium Prosthecochloris aestuarii (strain CE 2401) was cultured in a benthic gradient chamber to study its growth and photosynthetic activity in experimental gradients of oxygen, sulphide and light. An axenic biofilm was obtained within evenly inoculated artificial sediment after 5 weeks of incubation. The phototrophic biofilm was located 2.2-3.5 mm below the sediment surface, i.e. below the maximal penetration depth of oxygen, thus confirming that growth of P. aestuarii was restricted to strictly anoxic sediment layers. The activity was limited by the diffusive flux of sulphide, showing the role of molecular diffusion in growth of this benthic species. Scalar irradiance was attenuated strongly in the biofilm, with distinct attenuation maxima at 750 nm corresponding to bacteriochlorophyll c (Bchl c) absorption and at 800 nm corresponding to bacteriochlorophyll a (Bchl a) absorption. Using radiance attenuation data as a proxy for photopigment contents it was shown that the ratio Bchl a/Bchl c changed with depth. This indicates chromatic adaptation to changing light climates in the sediment. Total sulphide oxidation was estimated from the sulphide fluxes from below into the reaction zone. Measurements of sulphide oxidation as a function of scalar irradiance in the reaction zone showed that anoxygenic photosynthesis of the biofilm was saturated at a scalar irradiance (430-830 nm)>2 µmol photons m-2 s-1.

SELECTION OF CITATIONS
SEARCH DETAIL
...