Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Phys Rev E ; 109(5-2): 055106, 2024 May.
Article in English | MEDLINE | ID: mdl-38907504

ABSTRACT

We present a study of the intermittent properties of a shell model of turbulence with statistics of ∼10^{7} eddy turn over time, achieved thanks to an implementation on a large-scale parallel GPU factory. This allows us to quantify the inertial range anomalous scaling properties of the velocity fluctuations up to the 24th-order moment. Through a careful assessment of the statistical and systematic uncertainties, we show that none of the phenomenological and theoretical models previously proposed in the literature to predict the anomalous power-law exponents in the inertial range are in agreement with our high-precision numerical measurements. We find that at asymptotically high-order moments, the anomalous exponents tend toward a linear scaling, suggesting that extreme turbulent events are dominated by one leading singularity. We found that systematic corrections to scaling induced by the infrared and ultraviolet (viscous) cutoffs are the main limitations to precision for low-order moments, while high orders are mainly affected by the finite statistical samples.. The high-fidelity numerical results reported in this work offer an ideal benchmark for the development of future theoretical models of intermittency in dynamical systems for either extreme events (high-order moments) or typical fluctuations (low-order moments). For the latter, we show that we achieve a precision in the determination of the inertial range scaling exponents of the order of one part over ten thousand (fifth significant digit), which may be considered a record for out-of-equilibrium fluid-mechanics systems and models.

2.
Nature ; 627(8004): 515-521, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38509279

ABSTRACT

Fully developed turbulence is a universal and scale-invariant chaotic state characterized by an energy cascade from large to small scales at which the cascade is eventually arrested by dissipation1-6. Here we show how to harness these seemingly structureless turbulent cascades to generate patterns. Pattern formation entails a process of wavelength selection, which can usually be traced to the linear instability of a homogeneous state7. By contrast, the mechanism we propose here is fully nonlinear. It is triggered by the non-dissipative arrest of turbulent cascades: energy piles up at an intermediate scale, which is neither the system size nor the smallest scales at which energy is usually dissipated. Using a combination of theory and large-scale simulations, we show that the tunable wavelength of these cascade-induced patterns can be set by a non-dissipative transport coefficient called odd viscosity, ubiquitous in chiral fluids ranging from bioactive to quantum systems8-12. Odd viscosity, which acts as a scale-dependent Coriolis-like force, leads to a two-dimensionalization of the flow at small scales, in contrast with rotating fluids in which a two-dimensionalization occurs at large scales4. Apart from odd viscosity fluids, we discuss how cascade-induced patterns can arise in natural systems, including atmospheric flows13-19, stellar plasma such as the solar wind20-22, or the pulverization and coagulation of objects or droplets in which mass rather than energy cascades23-25.

3.
Appl Opt ; 62(27): 7205-7215, 2023 Sep 20.
Article in English | MEDLINE | ID: mdl-37855576

ABSTRACT

Interferometric scattering microscopy can image the dynamics of nanometer-scale systems. The typical approach to analyzing interferometric images involves intensive processing, which discards data and limits the precision of measurements. We demonstrate an alternative approach: modeling the interferometric point spread function and fitting this model to data within a Bayesian framework. This approach yields best-fit parameters, including the particle's three-dimensional position and polarizability, as well as uncertainties and correlations between these parameters. Building on recent work, we develop a model that is parameterized for rapid fitting. The model is designed to work with Hamiltonian Monte Carlo techniques that leverage automatic differentiation. We validate this approach by fitting the model to interferometric images of colloidal nanoparticles. We apply the method to track a diffusing particle in three dimensions, to directly infer the diffusion coefficient of a nanoparticle without calculating a mean-square displacement, and to quantify the ejection of DNA from an individual lambda phage virus, demonstrating that the approach can be used to infer both static and dynamic properties of nanoscale systems.

4.
Phys Rev Lett ; 127(27): 278002, 2021 Dec 31.
Article in English | MEDLINE | ID: mdl-35061437

ABSTRACT

Dense active matter is gaining widespread interest due to its remarkable similarity with conventional glass-forming materials. However, active matter is inherently out of equilibrium and even simple models such as active Brownian particles (ABPs) and active Ornstein-Uhlenbeck particles (AOUPs) behave markedly differently from their passive counterparts. Controversially, this difference has been shown to manifest itself via either a speedup, slowdown, or nonmonotonic change of the glassy relaxation dynamics. Here we rationalize these seemingly contrasting views on the departure from equilibrium by identifying the ratio of the short-time length scale to the cage length, i.e., the length scale of local particle caging, as a vital and unifying control parameter for active glassy matter. In particular, we explore the glassy dynamics of both thermal and athermal ABPs and AOUPs upon increasing the persistence time. We find that for all studied systems there is an optimum of the dynamics; this optimum occurs when the cage length coincides with the corresponding short-time length scale of the system, which is either the persistence length for athermal systems or a combination of the persistence length and a diffusive length scale for thermal systems. This new insight, for which we also provide a simple physical argument, allows us to reconcile and explain the manifestly disparate departures from equilibrium reported in many previous studies of dense active materials.

SELECTION OF CITATIONS
SEARCH DETAIL
...