Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Integr Zool ; 14(1): 30-47, 2019 Jan.
Article in English | MEDLINE | ID: mdl-29851240

ABSTRACT

As one of the few felids that is predominantly diurnal, cheetahs (Acinonyx jubatus) can be exposed to high heat loads in their natural habitat. Little is known about long-term patterns of body temperature and activity (including hunting) in cheetahs because long-term concurrent measurements of body temperature and activity have never been reported for cheetahs, or, indeed, for any free-living felid. We report here body temperature and locomotor activity measured with implanted data loggers over 7 months in 5 free-living cheetahs in Namibia. Air temperature ranged from a maximum of 39 °C in summer to -2 °C in winter. Cheetahs had higher (∼0.4 °C) maximum 24-h body temperatures, later acrophase (∼1 h), with larger fluctuations in the range of the 24-h body temperature rhythm (approximately 0.4 °C) during a hot-dry period than during a cool-dry period, but maintained homeothermy irrespective of the climatic conditions. As ambient temperatures increased, the cheetahs shifted from a diurnal to a crepuscular activity pattern, with reduced activity between 900 and 1500 hours and increased nocturnal activity. The timing of hunts followed the general pattern of activity; the cheetahs hunted when they were on the move. Cheetahs hunted if an opportunity presented itself; on occasion they hunted in the midday heat or in total darkness (new moon). Biologging revealed insights into cheetah biology that are not accessible by traditional observer-based techniques.


Subject(s)
Acinonyx/physiology , Monitoring, Physiologic/veterinary , Animals , Body Temperature , Female , Male , Monitoring, Physiologic/instrumentation , Monitoring, Physiologic/methods , Motor Activity , Namibia , Predatory Behavior , Seasons , Temperature
2.
Biol Lett ; 9(5): 20130472, 2013 Oct 23.
Article in English | MEDLINE | ID: mdl-23883578

ABSTRACT

Hunting cheetah reportedly store metabolic heat during the chase and abandon chases because they overheat. Using biologging to remotely measure the body temperature (every minute) and locomotor activity (every 5 min) of four free-living cheetah, hunting spontaneously, we found that cheetah abandoned hunts, but not because they overheated. Body temperature averaged 38.4°C when the chase was terminated. Storage of metabolic heat did not compromise hunts. The increase in body temperature following a successful hunt was double that of an unsuccessful hunt (1.3°C ± 0.2°C versus 0.5°C ± 0.1°C), even though the level of activity during the hunts was similar. We propose that the increase in body temperature following a successful hunt is a stress hyperthermia, rather than an exercise-induced hyperthermia.


Subject(s)
Acinonyx/physiology , Fever , Predatory Behavior , Animals , Body Temperature
3.
Article in English | MEDLINE | ID: mdl-19056508

ABSTRACT

Using intra-abdominal miniature data loggers, we measured core body temperature in female springbok (Antidorcas marsupialis) of three colour morphs (black, normal and white), free-living in the Karoo, South Africa, for one year. During winter, white springbok displayed lower daily minimum body temperatures (37.4+/-0.5 degrees C), than both black (38.1+/-0.3 degrees C) and normal (38.0+/-0.6 degrees C) springbok. During spring, black springbok displayed higher daily maximum body temperatures (40.7+/-0.1 degrees C) than both white (40.2+/-0.2 degrees C) and normal (40.2+/-0.2 degrees C) springbok. These high maximum body temperatures were associated with larger daily amplitudes of nychthemeral rhythm of body temperature (2.0+/-0.2 degrees C), than that of white (1.6+/-0.1 degrees C) and normal (1.7+/-0.2 degrees C) springbok. Biophysical properties of sample springbok pelts were consistent with these patterns, as the black springbok pelt showed lower reflectance in the visible spectral range, and higher heat load from simulated solar radiation, than did the pelts of the other two springbok. Black springbok had lower diurnal activity in winter, consistent with them having to forage less because their metabolic cost of homeothermy was lower, but were disadvantaged in hot periods. White springbok, by contrast, were more protected from solar heat load, but potentially less able to meet the energy cost of homeothermy in winter. Thus energy considerations may underlie the rarity of the springbok colour morphs.


Subject(s)
Behavior, Animal/physiology , Body Temperature Regulation/physiology , Skin Physiological Phenomena , Skin Pigmentation , Animals , Antelopes , Climate , Female , Reproducibility of Results , South Africa , Time Factors
SELECTION OF CITATIONS
SEARCH DETAIL
...