Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Eur J Pharm Sci ; 109S: S83-S89, 2017 Nov 15.
Article in English | MEDLINE | ID: mdl-28502676

ABSTRACT

The influence of drug-target binding kinetics on target occupancy can be influenced by drug distribution and diffusion around the target, often referred to as "rebinding" or "diffusion-limited binding". This gives rise to a decreased decline of the drug-target complex concentration as a result of a locally higher drug concentration that arises around the target, which leads to prolonged target exposure to the drug. This phenomenon has been approximated by the steady-state approximation, assuming a steady-state concentration around the target. Recently, a rate-limiting step approximation of drug distribution and drug-target binding has been published. However, a comparison between both approaches has not been made so far. In this study, the rate-limiting step approximation has been rewritten into the same mathematical format as the steady-state approximation in order to compare the performance of both approaches for the investigation of the influence of drug-target binding kinetics on target occupancy. While both approximations clearly indicated the importance of kon and high target concentrations, it was shown that the rate-limiting step approximation is more accurate than the steady-state approximation, especially when dissociation is fast compared to association and distribution out of the binding compartment. It is therefore concluded that the new rate-limiting step approximation is to be preferred for assessing the influence of binding kinetics on local target site concentrations and target occupancy.


Subject(s)
Drug Delivery Systems , Pharmaceutical Preparations/administration & dosage , Pharmaceutical Preparations/metabolism , Diffusion , Humans , Kinetics , Tissue Distribution/drug effects
2.
Pharm Res ; 33(1): 40-51, 2016 Jan.
Article in English | MEDLINE | ID: mdl-26553352

ABSTRACT

BACKGROUND AND PURPOSE: The selection of the most suitable animal species and subsequent translation of the concentration-effect relationship to humans are critical steps for accurate assessment of the pro-arrhythmic risk of candidate molecules. The objective of this investigation was to assess quantitatively the differences in the QTc prolonging effects of moxifloxacin between cynomolgus monkeys, dogs and humans. The impact of interspecies differences is also illustrated for a new candidate molecule. EXPERIMENTAL APPROACH: Pharmacokinetic data and ECG recordings from pre-clinical protocols in monkeys and dogs and from a phase I trial in healthy subjects were identified for the purpose of this analysis. A previously established Bayesian model describing the combined effect of heart rate, circadian variation and drug effect on the QT interval was used to describe the pharmacokinetic-pharmacodynamic relationships. The probability of a ≥ 10 ms increase in QT was derived as measure of the pro-arrhythmic effect. KEY RESULTS: For moxifloxacin, the concentrations associated with a 50% probability of QT prolongation ≥ 10 ms (Cp50) varied from 20.3 to 6.4 and 2.6 µM in dogs, monkeys and humans, respectively. For NCE05, these values were 0.4 µM vs 2.0 µM for monkeys and humans, respectively. CONCLUSIONS AND IMPLICATIONS: Our findings reveal significant interspecies differences in the QT-prolonging effect of moxifloxacin. In addition to the dissimilarity in pharmacokinetics across species, it is likely that differences in pharmacodynamics also play an important role. It appears that, regardless of the animal model used, a translation function is needed to predict concentration-effect relationships in humans.


Subject(s)
Anti-Bacterial Agents/adverse effects , Fluoroquinolones/adverse effects , Long QT Syndrome/chemically induced , Long QT Syndrome/physiopathology , Adolescent , Adult , Algorithms , Animals , Anti-Bacterial Agents/pharmacokinetics , Clinical Trials, Phase I as Topic , Dogs , Electrocardiography/drug effects , Female , Fluoroquinolones/pharmacokinetics , Humans , Macaca fascicularis , Male , Middle Aged , Moxifloxacin , Randomized Controlled Trials as Topic , Risk Assessment , Species Specificity , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL
...