Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
mSphere ; 9(6): e0025224, 2024 Jun 25.
Article in English | MEDLINE | ID: mdl-38771049

ABSTRACT

Cryptic conjugative plasmids lack antibiotic-resistance genes (ARGs). These plasmids can capture ARGs from the vast pool of the environmental metagenome, but the mechanism to recruit ARGs remains to be elucidated. To investigate the recruitment of ARGs by a cryptic plasmid, we sequenced and conducted mating experiments with Escherichia coli SW4848 (collected from a lake) that has a cryptic IncX (IncX4) plasmid and an IncF (IncFII/IncFIIB) plasmid with five genes that confer resistance to aminoglycosides (strA and strB), sulfonamides (sul2), tetracycline [tet(A)], and trimethoprim (dfrA5). In a conjugation experiment, a novel hybrid Tn21/Tn1721 transposon of 22,570 bp (designated Tn7714) carrying the five ARG mobilized spontaneously from the IncF plasmid to the cryptic IncX plasmid. The IncF plasmid was found to be conjugative when it was electroporated into E. coli DH10B (without the IncX plasmid). Two parallel conjugations with the IncF and the new IncX (carrying the novel Tn7714 transposon) plasmids in two separate E. coli DH10B as donors and E. coli J53 as the recipient revealed that the conjugation rate of the new IncX plasmid (with the novel Tn7714 transposon and five ARGs) is more than two orders of magnitude larger than the IncF plasmid. For the first time, this study shows experimental evidence that cryptic environmental plasmids can capture and transfer transposons with ARGs to other bacteria, creating novel multidrug-resistant conjugative plasmids with higher dispersion potential. IMPORTANCE: Cryptic conjugative plasmids are extrachromosomal DNA molecules without antibiotic-resistance genes (ARGs). Environmental bacteria carrying cryptic plasmids with a high conjugation rate threaten public health because they can capture clinically relevant ARGs and rapidly spread them to pathogenic bacteria. However, the mechanism to recruit ARG by cryptic conjugative plasmids in environmental bacteria has not been observed experimentally. Here, we document the first translocation of a transposon with multiple clinically relevant ARGs to a cryptic environmental conjugative plasmid. The new multidrug-resistant conjugative plasmid has a conjugation rate that is two orders of magnitude higher than the original plasmid that carries the ARG (i.e., the new plasmid from the environment can spread ARG more than two orders of magnitude faster). Our work illustrates the importance of studying the mobilization of ARGs in environmental bacteria. It sheds light on how cryptic conjugative plasmids recruit ARGs, a phenomenon at the root of the antibiotic crisis.


Subject(s)
Anti-Bacterial Agents , Conjugation, Genetic , DNA Transposable Elements , Escherichia coli , Plasmids , Plasmids/genetics , DNA Transposable Elements/genetics , Escherichia coli/genetics , Escherichia coli/drug effects , Anti-Bacterial Agents/pharmacology , Lakes/microbiology , Drug Resistance, Multiple, Bacterial/genetics , Gene Transfer, Horizontal , Drug Resistance, Bacterial/genetics
2.
J Hered ; 100(1): 56-65, 2009.
Article in English | MEDLINE | ID: mdl-18779226

ABSTRACT

It has been difficult to infer the genetic history of avocado breeding, owing to the role of hybridization in the origin of contemporary avocado cultivars. To address this difficulty, we used the model-based clustering program, STRUCTURE, and nucleotide polymorphism in 5960 bp of sequence from 4 nuclear loci to examine population structure in 21 wild avocado accessions. The origins of 33 cultivars were inferred relative to the wild sample. Nucleotide sequence diversity in domesticated avocados ranged between 80% and 90% of that observed for the same loci in wild avocado, depending on the diversity statistic used for comparison. Substantial genetic differentiation among 3 geographic groups of wild germplasm corresponded to the classically defined horticultural races of avocado. Previously undetected genetic differentiation was revealed in wild populations from Central Mexico, where 2 subpopulations were distinguished based on elevation and latitude.


Subject(s)
Genetic Variation/genetics , Persea/genetics , Base Sequence , Gene Flow , Genetics, Population , Genome, Plant , Geography , Haplotypes , Mexico , Molecular Sequence Data , Polymorphism, Genetic
3.
J Hered ; 99(4): 382-9, 2008.
Article in English | MEDLINE | ID: mdl-18343895

ABSTRACT

Resequencing studies provide the ultimate resolution of genetic diversity because they identify all mutations in a gene that are present within the sampled individuals. We report a resequencing study of Persea americana, a subtropical tree species native to Meso- and Central America and the progenitor of cultivated avocado. The sample includes 21 wild accessions from Mexico, Costa Rica, Ecuador, and the Dominican Republic. Estimated levels of nucleotide polymorphism and linkage disequilibrium (LD) are obtained from fully resolved haplotype data from 4 nuclear loci that span 5960 nucleotide sites. Results show that, although avocado is a subtropical tree crop and a predominantly outcrossing plant, the overall level of genetic variation is not exceptionally high (nucleotide diversity at silent sites, pi(sil) = 0.0102) compared with available estimates from temperate plant species. Intralocus LD decays rapidly to half the initial value within about 1 kb. Estimates of recombination rate (based on the sequence data) show that the rate is not exceptionally high when compared with annual plants such as wild barley or maize. Interlocus LD is significant owing to substantial population structure induced by mixing of the 3 botanical races of avocado.


Subject(s)
Linkage Disequilibrium , Persea/genetics , Polymorphism, Single Nucleotide , Base Sequence , Geography , Molecular Sequence Data , Recombination, Genetic
SELECTION OF CITATIONS
SEARCH DETAIL
...